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Abstract

Functionally graded materials (FGMs) are Characteriz_ by spatially variable microstruc-

tures which are introduced to satisfT given performance requirements. The micr_structural

gradation gives rise to continuously or discretely changing material properties which compli-
cate FGM analysis. Various techniques have b_n developed during the past several decades

for analyzing traditional compasites and many of these have been adapted for the analysis of
FGMs. Most of the available techniques use the so-called uncoupled approach in order to an-

alyze graded structures. These techniques ignore the effect of microstructural gradation by

employing specific spatial material property variations that are either assumed or obtained by

local homogenization. The higher-order theory for fimctionally graded materials (HOTFGM) ls
a coupled approach developed by Aboudi et al. (1999) which takes the effect of micrastructural

gradation into consideration and does not ignore the local-global interaction of the spatially

variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation
of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the

original higher-order theory for two-dimensional elastic problems is developed and validatec£

The use of the local-global conductivity and local-global stit_ess matrix approach is made in

order to reduce the number of equations involvecL In this approach, surface.averaged quantities

are the prhnary variables which replace volume-averaged quantities employed in the original for-
mulation. The reformulation decreases the size of the global conductivity and stiffness matrices
by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical

problenm are analyzed in order to validate the accuracy of the reformulated theorT through
comparison with analytical and finite-element .solutions. The presented results illustrate the

efficiency of the reformulation and its advantages in analyzing functionally graded materials.

Introduction

Functionally graded materials (FGMs) are a new generation of composites wherein the microstruc-

rural details are spatially varied through nonuniform distribution of the reinforcement phase(s), by

using reinforcement with different properties, sizes and shapes, as well as by interchanging the roles

of reinforcement and matrix phases in a continuous manner. The result is a microstructure that

produces continuously changing thermal and mechanical properties at the macroscopic or contin-

uum level. This new concept of engineering the material's microstructure marks a new paradigm in

both the materials science and mechanics of materials areas since it allows to fully integrate both

the material and structural considerations into the final design of structural components.
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Althoughthe areaof FGMs is not very old, an enormous amount of research has already taken

place and the field continues to expand rapidly. Many papers on different aspects of FGMs have

been published in the past decade in regular journals, special issues of journals devoted to FGMs,

conference proceedings, and monographs, cf. Pindera et al. (1994a, 1995a, 1997a), Needleman

and Suresh (1996), IIschner and Cherradi (1994), Shiota and Miyamoto (1997), and Suresh and

Mortensen (1998). Therefore, a comprehensive review of the different research activities is outside

the scope of this report. In keeping with the focus of the undertaken study, an overview is provided

below of the different approaches employed to model the thermomechanical response of FGMs.

The analysis of functionally graded materials is a difficult task because of the arbitrary varia-

tion of material microstructure. In order to analyze the response of functionally graded materials

under given loading conditions, two distinct approaches have been used to date. The first is the

uncoupled micro-macrostructural approach. In this approach, FGMs are analyzed directly at the

continuum level, which allows to reduce a given boundary value problem to a system of differen-

tial equations with variable coefficients. These variable coefficients represent macroscopic material

property variations expressed as functions of position that are obtained by local homogenization of

the microstructure or sometimes taken to have specific functional forms. In some cases, the material

properties are assumed to be piecewise uniform through appropriate microstructural discretization,

and then the governing differential equations are solved for each layer subject to interracial conti-

nuity and boundary conditions.

There are various micromechanical models that have been used for homogenizing the microstruc-

ture of functionally graded materials. These micromechanical models include Voigt and Reuss es-

timates. Mori-Tanaka method, Composite Cylinder Assemblage (CCA) model, Method of Cells,

etc., and have been described in detail by Aboudi (1991). The uncoupled analysis of functionally

graded materials involves the determination of effective (macroscopic) properties at a continuum

point based on the chosen micromechanics model_ a step called local homogenization, which are

then used in the overall analysis of the structure to determine the macroscopic field quantities.

This two-step procedure essentially neglects the interaction between non-uniformly distributed in-

clusions and decouples the locally produced effects of microstructural variation. This can often

lead to potentially erroneous results, especially when the size of the inclusion phase is large with

respect to the overall dimensions of the composite, the field gradients are high, or when the num-

ber of inclusions is small. Hence, these models can only be used in limited circumstances such as

when the size of the inclusion phase is very small in comparison to the overall size of the analyzed

structural component and the total number of inclusions is large, Pindera et al. (1995).

Using the uncoupled approach, various researchers have developed different analytical tech-

niques for studying particular types of problems in functionally graded materials. In general, these

techniques include either a specific type of loading, a specific geometry or specific variation of ma-

terial properties. The type of problems studied involve thermal barrier coating and joint problems,

crack problems, and design and optimization problems. Representative papers in these areas are
discussed below.

One of the most important applications of functionally graded materials is in the field of thermal

barrier coatings. Internal stresses can be reduced and fracture toughness enhanced with appropriate

spatial variation of ceramic and metallic phases. Approaches employed to study temperature fields

and resulting stresses in thermal barrier coatings depend on whether elastic or inelastic analyses are

conducted, as discussed recently in an extensive review paper by Noda (1999). In the case of inelas-

tic effects, approaches range from one-dimensional finite-difference analyses, Kokini and Choules

(1995), to two-dimensional or axisymmetric finite-element analyses based on layer-wise discretiza-

tion of the coating's microstructure with piece-wise varying properties, Jian et al. (1995), De[fosse

et al. (1997). The properties of the individual layers are typically obtained using either simple
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rule-of-mixtures or Mori-Tanaka estimates. In the absence of inelastic effects, analytical techniques

and their numerical implementations have been employed with the property variation described by
continuous functions. For instance, Jeon et al. (1997) discuss an axisymmetric thermoelastic solu-

tion for an inhomogeneous material by introducing a thermoelastic displacement potential function.

Sutradhar et al. (2001) use the Green's function approach in a boundary element setting in order to

study the 3-D transient heat conduction in functionally graded materials with exponential thermal
conductivity variation.

Analysis of graded joints has also received considerable attention due to the large interlaminar

stresses that may arise along a bi-material interface at the free edge. For example, Drake et al.

(1993) and Williamson et al. (1993) employed the finite-element method to study the residual

stresses that develop at graded ceramic-metal interfaces joining cylindrical bodies made of metallic

and ceramic components. The gradation was modeled using a series of perfectly bonded cylindrical
layers, with each layer having slightly different properties. The authors' results demonstrated the

importance of plasticity effects in the analysis of graded and non-graded interfaces. The authors

also showed that, in some cases, optimization of the microstructure of graded layers is required to

achieve reduction in certain critical stress components that control interracial failure. Along similar

lines, Suresh et al. (1994) studied the response of elastoplastic bimaterial strips subjected to cyclic

temperature variations. The authors showed that plastic flow along the material interface at the

free edge can be modified substantially by altering the constraints at the strip edge.

Functionally graded microstructures can be very useful in enhancing material's fracture resis-

tance through the mechanism of crack blunting and crack-path deflection. In fact, the enhanced

fracture toughness of graded coatings is due to the local material heterogeneity. In order to keep

the problem tractable, local material heterogeneity is replaced by spatially varying homogenized

properties, reducing the problem of a crack in an heterogeneous material to an inhomogeneous

medium crack problem. Crack problems in inhomogeneous materials have been studied by a num-

ber of people since the 1960's. However, systematic studies of this class of crack problems were

initiated in the early 1980's by Erdogan and co-workers, cf.. Delale and Erdogan (1983), Erdogan
(1985), Erdogan et al. (1991), and subsequently extended to functionally graded materials. In

applications involving TBCs, different types of cracks may arise, including cracks perpendicular

and parallel to the coating's surface and at the free edge between the substrate and the graded or

layered coating. These different scenarios have been discussed by Erdogan (1995). Kadioglu and

Erdogan (1995), Erdogan and Wu (1996), Schulze and Erdogan (1998), Lee and Erdogan (1998),
and Jin and Paulino (2001). Additional solutions to crack problems in the presence of thermal and

mechanical loading have been provided by Noda and Jin (1993) who discuss thermal stress inten-

sity factors for a FGM strip using Fourier transforms, showing the efficiency of suitable material

selection in reducing these intensity factors. Crack problems in viscoelastic functionally graded

materials have recently been addressed by Paulino and Jin (2001).

The ultimate objective in designing a structure for practical applications is not just the ability

to analyze a given heterogeneous component, but the identification of an optimum design which

produces the best stress distribution for the given application. Various researchers have provided

analytical solutions for specific types of problems which are useful in optimizing the design of
graded structures. These analytical solutions also serve as benchmark solutions for the validation

and verification of finite-element and other approximate techniques which have been developed or

are being developed for the analysis of functionally graded materials. For instance, Salzar and

Barton (1994) incorporated the analytical solution for the axisymmetric elastoplastic response of a

multilayered cylinder_ developed by Pindera et al. (1993), into a commercial optimization code to

minimize residual stresses in metal-matrix composites using graded interfaces. Horgan and Chan

(1998_ 1999) developed solutions for problems involving pressurized hollow cylinders, rotating disks,
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andbars under torsion with continuously graded isotropic Unearly elastic materials. Ootao et al.

(1998) discuss the optimization of material gradation for a hollow circular cylinder under thermal

loading. They use the concept of a laminated composite cylinder with piece-wise homogenous and
uniform material properties together with the neural network approach in order to determine an

optimum design. Nadeau and Ferrari (1999) discuss microstructural optimization of a functionally

graded transversely isotropic layer. Noda (1999) identifies optimal composition profiles to reduce
thermal stresses in FGMs using perturbation methods.

The second approach employed in the analysis of functionally graded materials is the coupled
approach. In this approach, the effects of microstructural variation and the interaction between

nonuniformly distributed inclusions are explicitly taken into account in the course of solving the

governing differential equations. This in turn, makes possible the analysis of heterogeneous mate-

rials with different microstructural scales, in contrast to the uncoupled approach which is limited
to materials with very fine microstructures.

The higher-order theory for functionally graded materials (HOTFGM) is an approximate cou-
pled approach based on a particular volume discretization of the material's microstructure and an

averaging approach in the solution of the governing field equations in each subvolume. This theory

has been developed in a sequence of papers dating back to 1993, Aboudi et al. (1993), in order

to circumvent the limitations of the uncoupled approach. Summaries of the different stages of the

higher-order theory's development have been provided by Pindera et al. (1995b; 1998), and most

recently in a comprehensive article by Aboudi et al. (1999). As discussed in this review article,

the theory has been employed to analyze a number of technologically important problems ranging
from thermally-induced free-edge interlaminar stresses in cross-ply laminates, optimization of fiber

spacing in laminates subjected to thermal gradients, and thermal barrier coatings. The focus of

these applications was the demonstration of microstructural coupling effects in functionally graded

materials as a function of the microstructural length scale, and when these effects can be neglected,

as well as the demonstration of the utility of functionally graded microstructures in enhancing the

performance of plate-like structural components subjected to through-thickness thermal gradients.

Specifically, the higher-order theory has been applied to the following technologically important
problems:

• Investigation of the effect of microstructure on thermal and stress fields in MMC plates and
cylinders

• Investigation of the use of functionally graded architectures in reducing edge effects in MMC
plates

• Optimization of functionally graded microstructures in MMC plates and cylinders

• Development of guidelines for the design of special coatings in exhaust nozzle applications

under NASA/Pratt & Whitney Space Act Agreement

• Investigation of microstructural effects in functionally graded TBCs

The results obtained so far have demonstrated that this theory is an accurate, cf. Pindera and

Duma (1997), and easily implementable tool in the analysis and design of FGMs. Furthermore,

comparison of the results obtained from the standard micromechanics approach with those of

HOTFGM has demonstrated the need for a theory like HOTFGM, which explicitly couples the

micro (local) and macro (global) effects in the analysis, Pindera et al. (1994b; 1995c).

The recent developments of HOTFGM include extension to cylindrical ccordinates to enable

analysis, design, and optimization of structural components found in aircraft engine applications,
Pindera and Aboudi (2000).
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1.1 Objectives and Outline of the Completed Iuvestigation

As demonstrated through its applications, the higher-order theory is an accurate and useful ap-

proach for the analysis of functionally graded materials which takes the micro-macrostructural

coupling into account and does not neglect the effects of microstructural variation. However, the

higher-order theory is computationally intensive in those cases which require detailed volume dis-

cretization in order to mimic realistic microstructural details in certain types of functionally graded

materials or to capture very high thermal and stress gradients. Such detailed modeling leads to

a large number of equations whose solution becomes computationally prohibitively expensive and

sometimes impossible to execute due to the large computer storage requirements.

This report describes an efficient reformulation of the higher-order theory which leads to a sig-

nificant reduction in the number of equations required in a problem's solution. This reformulation

is accomplished by making use of the so-called local-global conductivity and stiffness matrix ap-

proaches employed in conjunction with a simpUed manner of volume discretization developed by

Zhong and Pindera (2002). The simplified volume discretization provides the basis for the refor-

mulation by enabling the derivation of closed-form relations between surface-average heat fluxes

and tractions and the corresponding temperatures and displacements associated with a generic

subvolume. Therefore, volume-averaged quantities employed in the original higher-order theory

are replaced by surface-averaged quantities as the fundamental unknowns in order to employ the

local-global conductivity and stiiTness matrix approaches in the reformulation.

The original two-dimensional formulation of HOTFGM is described briefly in Section 2. The

motivation for efficient reformulation of the higher-order theory and the reformulation approach are

then discussed in Section 3. Section 4 describes the effect of mesh discretization on the field variables

for selected loading conditions and also provides validation of the reformulated higher-order theory

by considering several test cases, including the classic Eshelby problem of a circular inclusion

in an infinite matrix subjected to uniform far-field loading. The results are compared with the

analytical solution and a finite-element solution obtained using ANSYS. Section 5 demonstrates the

usefulness of the higher-order theory in the analysis of functionally graded materials by considering

a thermal barrier coating application. Section 6 summarizes the present accomplishments and

provides suggestions for future work which should be pursued in this area.

2 Higher-Order Theory: Original Formulation

The version of the higher-order theory for materials functionally graded in two directions, or

HOTFGM-2D, is based on a geometric model of a heterogeneous composite graded in the x2 - x3

plane which occupies the region 0 < x2 _< H, and 0 < x3 _< L, Fig. 1. The microstructural

pattern is represented by discretizing the cross-section of the heterogeneouscomposite into Nq and

Nr generic cells in the intervals 0 < x2 _< H, and 0 < x3 _< L, respectively. The indices q and r

(q - 1, 2, ..., Nq and r - 1, 2, ..., Nr), identify the generic cells in the x2 - x3 plane. The generic cell

(q, r) consists of four subcells designated by (/_7), where each index/3, _/takes a value 1 or 2 which

indicates the relative position of the given subcell within the generic cell along the x2 and x3 axis,

respectively. The thermomechanical properties of the material within a subcell are assumed to be

constant. The composite is assumed to be infinite in the x l direction, whereas the dimensions of

the generic cell along the functionally graded directions x2 and x3 are h_q), h(2q), and/_r),/2(r), and
can vary arbitrarily such that

Nq N_

H - Z(h_ q) + h (q)) L - Z(l[ r) + 10")) (1)
q----1 r----I
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b

Generic Cell (q, r)

X1

Fig. 1. HOTFGM-2D representation of a composite functionally graded in the x2 and x3

directions with uniform microstructure in the x i direction.

The composite is subjected to combined thermomechanlcal loading on its bounding surfaces in

the x2 - x3 plane given in terms of temperature or heat flux, and surface displacements and/or
tractions. Further, the strain Ell (Eli -- 0, for planestrain) is uniform in the xl direction. Given the

applied thermomechanical loading, an approximate solution for the temperature and displacement

fields is constructed. The solution strategy involves volumetric averaging of the field equations

together with the imposition of boundary and continuity conditions in an average sense between

the sub-volumes used to characterize the material's microstructure. As described in Subsections

2.1 and 2.2, the temperature and in-plane displacement fields in each subcell of a generic cell

are approximated using a quadratic expansion in the local coordinates 22(/J), 2(3_) placed at the

subcell's centroid. This temperature and displacement field representation is sufficient to capture

the local effects created by the thermomechanical field gradients and the microstructure of the

graded material with finite dimensions in the functionally graded directions.

2.1 Thermal Analysis

The thermal boundary conditions specified in terms of temperature or heat flux distribution on the

bounding surface in the x2 -x3 plane are assumed to be steady-state. The temperature distribution

in the subcell (/77) of the (q, r)th generic cell measured with respect to a reference temperature Tref,
is denoted by T(_V). This temperature field is approximated by a second-order expansion in the

local coordinates _(2Dt),_(_) as follows:

T(fT_)_ m(Dt_)_(/_) _i.(/7_/)2(_)T(/3_) 1 3:_2(f7)2 h (q)2
_(00) +-"2 _(10) + "(01) + 2( .... 4..  m(n'r) ] (3 (3"r)2  T(Z'r),-'-(=o)+ 5 4 ,-<(o2) (2)
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whereq'(_) is the volume-averaged temperature in the subcell (37), and T_m_) (m, n_(00) -- 0, 1, or

2 with m + n _ 2) are the higher-order coefficients which provide a better approximation of the
temperature field throughout the subcell.

For a generic cell with four subcells containing arbitrarily specified materials, five unknowns

(i.e., ) ,..., )) are associated with each subcell, producing twenty unknowns for each generic

cell. This results in 20NqNr unknown quantities for a composite with Nr rows and Nq columns of
generic cells. These unknowns are determined by first satisfying the zeroth, first and second moment

of the heat conduction equation in each subcell in volumetric sense. Subsequently, continuity of

heat flux and temperature is imposed in an average sense at the interfaces separating adjacent
subcells, as well as neighboring cells, followed by the boundary conditions.

2.1.1 Heat conduction equation

Under steady-state thermal boundary conditions in the x2 - x3 plane, the heat flux field in the

material occupying the subcell (/_)ofthe (q,r) th generic cell, in the region l_ (_) < ½h (q), [5:(3"Y)]

11(_), must satisfy the steady-state heat conduction equation given by

Oq(_/) Oq(Z_)
t =0, (/3, 7 1,2) (3)

The heat flux components q_Z_) at any point passing through a subcell (/33) are derived from the

temperature field according to the Fourier's law of heat conduction given by

where k_zT) are the heat conductivity coefficients of the material in the subcell (37) assmned to be

orthotropic, and no summation is implied by repeated Greek letters in the above and henceforth.

In order to satisfy the above steady-state heat conduction equation in a volumetric sense, the

following volume-averaged quantities are defined in the higher-order theory

Q(z_) _ 1 fh(_q)/2 ^/_'(_)/2_(_'_) - a (q'_) .l_h(_)_. l(:)/2

where .a(q,r).(Z_)_ h(q)l(r) is the area of the subcell (/37) in the (q, r) th generic cell. g)(Z_)_(o,o)is the average

value of the heat flux component q}_) in the subcell (/_7), whereas for the other values of m and

n Eq. (5) defines higher-order heat fluxes. Satisfaction of the heat conduction equation given by

Eq. (3) results in the following four conditions in terms of the volume-averaged flux quantities

[t_(Z_) Q(z_) /12] (q,_)•_:(_,o)/@ + 3(o,_) - 0 (6)

Equation (6) can be expressed in terms of the coefficients T (z_)
(mn) by evaluating the flux quantities

defined in Eq. (5). Substituting Eq. (4) into Eq. (5), and performing the required volume

integration yields the following non-vanishing zeroth-order and first-order heat fluxes in terms of
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the coefficients T (z_)
(m_)

Q(Zn) _ v(zT)T(_n)
2(o,o) -'_2 -'-(m)

o(_3') k(_3,) h (q)2_ _ 7_(Zn)
"_2(1,o) 4 -'-(20)

(_n) _ _k(_-r),-f,(_)3(0,0) - _(0_)

- _ T(_)Q(_) _k(3_n ) ,0-)2
3(0,,) -_ _(02)

(7)

(8)

(9)

(10)

2.1.2 Heat flux continuity conditions

The heat flux continuity at the interfaces separating adjacent subcells within the generic cell (q, r)
is imposed in an integral sense as follows

1(--_/-6,)/2 q(2'7)(__, ) d2(3n)_l; ) if-z(,.)/2 q(2"r)(____. ) d._(37, (11)

h(q) Y-h(q'/2 q(3_,) , __) d2(Z) _ h_)1 q(Z2)(_(Z), ) d2 (z) (12)

Similarly, the heat flux continuity at the interfaces between generic cells is satisfied in an integral
sense by requiring that

(q+l,r)

1 fh(_q)/2[

f 6_) /2 [ h(q) ] (q,_)dx(')- l;--ZJ-_")/2 q(2n)( ,2(, ) d2(, )-_ ) (13)

(q,r)

,-_) (14)

Satisfaction of the above heat flux continuity conditions (11) - (14) results in the following eight
equations in terms of the vohtme-averaged flux qtmm;ities

[ -19¢)(1_) �hi + °(27) at)(27) /h2] (q'')""_2(1,0) _2(0,0) -- vW2(1,O) _ [_(2n) a°(2_) h2] (q-_'_)[_2(0,0) + -_2(_,0) / -0 (15)

o(_) 1 Q(2n) _ uo(2n) ] (q,r)--_2(0,0) + _ 2(0,0) _w2(t,o)/h2 + _ L"_2(o,o)+ v"_2(t,o) =0 (16)

[ -_°n(_) /l + n(_) - an(Z2) /12] (q'_)_3(0,0) _3(0,_) _ [O(Z2) 6o(_2) /12] (q,r-t)3L_3(0_ l) _3(0,0) + _3(o,t) = 0 (17)

_3(0,o) + _ 3(0,0) _¢ 3(0,1) //2 + 2 [_¢3(0,0) + -_3(o,1)//2 = 0 (18)

Equations (6) and (15) - (18) have been obtained in terms of the volume-averaged flux quantities

after some complex algebraic manipulations. For detailed derivation of these equations, refer to

Aboudi et al. (1996). These equations can now be expressed explicitly in terms of the microvariables
T(_)

(ran) with the use of Eqs. (7) - (10).
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where _(r) T(r)_left(x3) and (x3) are the piece-wise uniform applied temperatures on the external_ right

boundaries in the x2 - x3 plane. Similar reasoning holds for generic cells (q, 1), and (q, Nr). If

the temperatures are defined at the top and bottom surfaces for instance, the applied boundary
conditions are given by

1 fh(_ _)/2 [T(Zt)(22(Z) l_l)](q'l)d2(Z ) T(q)-bo.om(X2)h(9 ' 2 ) = (29)

1 fh(_q)/2[ (2(_) l(N')] (q'N')h(;) T(") ) d F)'2 = ._o,(X:) (30)

If the heat flux at any of the boundaries is defined instead of the applied temperature, Eqs. (27) -
(30) are modified accordingly.

2 1.5 Solution for T (z_)
• (mn)

To obtain a solution for the 20NqNr unknown coefficients (T[m_! in each (/3_) subcell), 20NqNr
equations are reqtfired. These equations are assembled using thee governing field equations, Eq.

(6), heat flux continuity conditions, Eqs. (15) - (18), and the temperature continuity conditions,
Eqs. (23) - (26), together with the imposed boundary conditions on the external boundaries of the

composite, Eqs. (27) - (30). The final system of equations obtained is symbolically written as

T-t (31)

In the above equation, _ is the structural thermal conductivity matrix which contains information

on the geometry and thermal conductivities of the individual subcells (/3_/) in the NqNr cells. The

thermal coefficient vector T contains the unknown coefficients that describe the temperature field
in each subcell, i.e.,

iT(1 ') T(22) ]T-
[ I1 "'" -'- NqNrJ

where

T <_'y) - [T(oo) T(,o) T(o,) T(2o) T(o2)] <_)qr _ _ _ _ qr

The thermal force vector t contains information on the boundary conditions.

2.2 Mechanical Analysis

The next step is to find the displacement and stress fields in the heterogeneous composite due to the

temperature field obtained in Subsection 2.1, and/or mechanical loading at the external boundaries

applied in a manner which is consistent with the global equilibrium requirements. Towards this

end, the displacement field in the subcell (/3_/) of the (q, r) th generic cell is approximated by a

second-order expansion in the local coordinates _(2/_)and :_(7) as follows:

u_z_) -- xt_tt (32)

u?_)- w(Z_)2(Z) w(ZT)_(_)w(ZT) 1 32(Z)2 h(q)2 ,_z(_7) 1 /0")2 _w(Z_)(33)
-:(oo) + "':(_o) + ' -:(o_) + _( - -T)'_:(:o) + _(3_(3_): - -_-J":(o:)

u(Z'9 w(Z') 27)w(ZT) _(')w(Z') 1(327) 2 h(q)2- _ _ W(ZT) 1 32(,)2 /(r)2 w(Z') (34)""3(00) + - 3(to) + "3(or) + _ 4 )'" 3(20) + _( - --_-)- 3(02)
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(_)
where W ..... are the volume-averaged displacements in the subcell (/97), and W.(,_-{), (i = 2, 3) are

z(,uu) _ z(rnn)
the higher-order quantities wMch determine the displacement and stress field at specific locations

within the subcell. Note that, in Eq. (32), x l is associated with the global coordinate system

fixed to the edges of the composite plate and not the local coordinate system associated with each

subcell. Also note that there are no product terms of the form _(/3)_(3-{) appearing in the above

displacement field approximation due to the employed volumetric and surface-averaging procedure

technique. The quantity _11 is the uniform strain in the x l direction which is zero for plane strain
analysis. For generalized plane strain, _11 is determined from the condition

E E -o
r=l q=l /9=1 -{=1

(35)

The other 10 unknown coefficients W (m-{)
i(mn) associated with each subcell (/97) of the (q, r) th generic

cell are determined from the conditions analogous to those employed in the thermal problem. Here,

the heat conduction equation is replaced by the two equilibrium equations, and the conditions

involving continuity of heat fluxes and temperature at the interfaces are replaced by the continuity
of tractions and displacements.

2.2.1 Equilibrium equations

The stress field in the subcell (/37) of the (q, r) th generic cell generated by the given temperature

field and the applied mechanical loading must satisfy the equilibrium equations

a2J _}_ v3J = 0, (j = 2, 3) (36)

For an orthotropic elastic material occupying the subcell (37) of the (q, r) th generic cell, the stress
components are related to the strain components through the familiar Hooke's law

a(/3-{)_--',(/3-{) (m-{) _T(m-{)
{j oi3kz%z - o{j (37)

where Cijkz are the stiffness tensor elements of the material in the subcell (37) e(Z-{), ij are the elastic

strain components, and aT(_/3-{)_sare the components of the so-called thermal stress given by

aT(Z'{) __ F}j_-{)T(/3-{ )- -- (3s)

where F(/3-{)ijis the product of the stiffness tensor components and thermal expansion coefficients.

T (z-{) represents the temperature change at a particular location in the subcell.

The components of the strain tensor in the individual subcells are obtained from the following
strain-displacement relations

10u 

ij -_(__ + 04. ) ) (39)

As in the thermal formulation case, in order to satisfy the equilibrium equations in an average sense

the following volume-averaged stress quantities are defined in the higher-order theory

= <) ) % (4o)
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whereS (zs) -(Z_)
ij(0,0) is the average value of the stress component vii in the subcell, whereas for other

values of m and n Eq. (40) defines higher-order stresses that are needed to describe the governing

field equations of the higher-order continuum. Satisfaction of the equilibrium equation (36) results
in the following eight equations in terms of the volume-averaged stress quantities

[.q(_'Y) q(Z_') /12] (q'r)_'2j(_,o)/h_ + _'35(o,_) - 0 (41)

Equation (41) can be expressed in terms of the coefficients W (z_) by evaluating the stress quan-i(mn)
titles defined in Eq. (40). Substituting Eqs. (37), (38), and (39) in Eq. (40), making use of the

displacement field representation, Eqs. (32) - (34), and performing the required volume integra-

tion yields the following non-vanishing zeroth and first-order stress components in terms of the
coefficients W (zT)

(Z_) _ _(Zn) w(Z'Y) ,_.(Z_) w(Z_) _ c(Z'gT(Z'r)
2(0,0) "_22 ""2(t0) + _23 "" 3(m) _22 _(00)

.y) _ 1 h(q)2_(Z._)H/(Z._) 1 /_(q)2c(Z.r)T(Z.y )
2(1,0) 4 "_22 "" 2(20) -- --_'"_ *22 *(10)

1_22(0,1) -- 4-"/ "_23 --2(02) -- _'Y *22 J'(Ol)

(_) - _(_) w(_) _(_) w(_) _ r(_)T(Z_)
(0,0) "-/23 " 2(10) -t- _33 " 3(01) *33 "_(00)

(_'Y) _ l h (q)2C(_'y) ,/v(_'y) l_2h (q)2v (_'_),T,(_'_)(_,o) _ Z 23 "" 2(2o) _33 _(m)

(_ ) _ 1 l(r)2m(_)H/(_) 1 l(r)2c(_)T(_ )
(0,1) -4""Y _33 "" 2(02) -- --_'3' *33 (O1)

S(Z'_) _ _(Zr) w(Z_) w(Z'_)
3(o,o) - -_4_ (,, :(o_) + "" 3(m))

(42)

(43)

(45)

(46)

(47)

(as)

S(Z._) 1/. (q)2 (7(_"Y) (_"Y)

3(1,0) -- 4'_ "_44 W3(20) (49)

S(_) 1 _(_)__ (_._)w(_)
3(o,_) = 4°_ _ "'2(o2) (50)

2.2.2 Traction continuity conditions

The traction continuity at the interfaces separating adjacent subcells within the generic cell (q, r)
is imposed in an integral sense as follows

1 f*(_")/: r (i._)h? ) 2(n)] (q'r)l(_") j_z(_)/2 [a2j (--2-, )

lfh(_')/2 /Ir)] (q'r)h(;) ["}2') Y)

dx(n)- 11) ff'_l(.)/2 ) (51)

where i, j - 2, 3. Similarly, the traction continuity at the interfaces between generic cells is satisfied
in an integral sense by requiring that

(q,r)
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_+1)]
' )

2 ') (54)

where i, j - 2, 3. Satisfaction of the above traction continuity conditions (51) - (54) results in the

following sixteen equations in terms of the volume-averaged stress quantities

9¢(ln) ¢(27) _ a¢(2_) ] (q,_)-l"_2j(l,o)/ht + _2j(o,o) v_2j(1,0)/h2

.q(l_) 1 .q(2n) _ q¢(2,) ] (q'_)- _2j(o,o) + 2 _2j(o,o) _"-'2j(1,0)/h2

_[¢(2_) aq(2_) /h2J(q-1, r)_2j(o,o) + -_2j(_,o) = 0 (55)

1 [_(2_) a¢(2_) ] (q-l,_)+ _ [_2j(0,o) + -_2j(l,o)/h2 = 0 (56)

_[¢(Z2) a¢(Z2) /12] (q,r-l)_3a(o,o) + _3j(O,l) = 0 (57)[__o¢(_1) q(Z2) _(Z2) /1 ] (q'_)_'_3j(o,1)/l1 + _3j(o,o) - °_3j(o,1)/2J

1 a¢(z2) ]+ _ L_3j(o,o) + ,.,_3j(o,1)ll2 = 0 (ss)¢(Z_) 1 _(/_2) _ 3S (/J2) ] (q,r)-_3j(0,0) + _ _3j(0,0) 3j(0,1)//2

where j - 2, 3. Equations (41) and (55) - (58) have been obtained in terms of the volume-averaged
stress quantities after some complex algebraic manipulations. For detailed derivation of these

equations, refer to Aboudi et al. (1996). These equations can now be expressed explicitly in terms
of the microvariables W. (_) W (_)2(m=) and 3(m=) with the use of Eqs. (42) - (50).

2.2.3 Displacement continuity conditions

The displacement contintfity at the interfaces separating adjacent subcells within the generic cell
(q, r) is imposed in an integral sense as follows

1 -t__)/2 uO_) ( , )
l(n")j'__,-)/: -_

1 fh(_ q)/2 [u(Z,)2(Z)l_r)] (q'r)n ( ' -i- )

(q,r)

dx(n)-ll)J-t_,.)/2u(:_r)(-- _ ) (59)

Similarly, the displacement continuity at the interfaces between generic cells is satisfied in an
integral sense by requiring that

h_q+')2 ' 2(n))] (q+'")

(q,r)

dx(n)- 11) j__(,.)/2 u(2n)(--_ - ) (61)

(q,r)

Satisfaction of the above displacement continuity conditions results in the following sixteen equa-
tions expressed directly in terms of the microvariables W. (z_) and W (z_)

2(m_) 3(m_)

VV) 1 W(_n) 1/.,2_s_.(t-v)] (q'')
3(00) _- 2 hl j(lO) -_- 4'_I "v3"(20) j [W(2_) 1 h2 + ] (63)

_ __ W(2_ ) 1_2_z(2_) (q,r)
[ a(00) 2 a(_0) _'_:"3(:0)
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[W(2_) 1 W(2_) 1 2W(2_)1 (q'_) [j(00) -_- _h2 j(lO) _- 4h2 j(20)J - W(l_)j(oo)- _hll W(1,)j(10) _t_ _h21 W(,,) ](q+l'_)j(2o)j

[W(Z') 1 w(Z')1 Hr(/3,) ] (q'_) [y(oo) + _ll "a(ol) + _112 _ w(_2) 1 W(_2 ) 1 W(_2) ] (q'_)

F,,,,,,)1 1:w,,,)],,,,+,)
j(o:) -- [_j(oo) - _ll "j(ol) + _ll "_(o2)J

(64)

(65)

(66)

2.2.4 Botmdary conditions

As in the thermal analysis case, some of the displacement and traction continuity conditions

described above are not valid for generic cells located at the boundaries defined by the indices

q -- 1, Nq, and r -1, Nr. For the set of boundary cells with q - 1, the traction continuity between

the given generic cell and preceding generic cell, Eqs. (55) - (56), is not applicable. Similarly for

q -- Nq, the displacement continuity between the given generic cell and following generic cell, Eel.

(64), is not applicable. These conditions are replaced the continuity of tractions between adjacent

subcells within the generic cell (1, r), and in case of traction boundary conditions by

l(_", U-z(_"'/2 [ :j (--_' ) d2(,) _ ÷09-- _left(x3) (67)

1 fg;')/2 |[ (13,)h(Nq), :_(_y)) -- (X3) (68)
l(TJ_l(.")/:[ %j ( 2 °_ight

j = 2,3

where ÷(r) ÷(7.)
_Left(x3), and _right (x3) are the piece-wise uniform applied surface tractions. Similar reasoning

holds for generic cells (q, 1), and (q, Nr). If the top and the bottom surfaces are fixed for instance,
the applied boundary conditions are given by

h(;)J-_(;)/: ' 2 )

1 f h(q,/2 [u_Z,)(2(Z ) l(N")] (q'N')h(;)J-_(;)/: ' 2 )

d_:(') - o (69)

d_(:') : 0 (70)

For other type of boundary conditions, Eqs. (67) - (70) are modified accordingly.

2.2.5 Solution for W (z_)
_(m,_)

Thus for the solution of the 40NqNr unknown coefficients W (z_)
i(mn) in each (/37)subcell, 40NqNr

equations are assembled using the governing field equations, Eq. (41), traction continuity condi-

tions, Eqs. (55) - (58), and the displacement continuity conditions, Eqs. (63) - (66), together with

the imposed boundary conditions on the external boundaries of the composite, Eqs. (67) - (70).
The final system of equations obtained is symbolically written as

K U- f (71)
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In the above equation, K is the structural stiffness matrix which contains information on the

geometry and thermomechanical properties of the individual subcells (_7) in the NqNr generic
cells. The displacement coefficient vector U contains the unknown coefficients that describe the
displacement field in each subcell, i.e.,

U- [U TT(22)1
11 _ ""_ "NqNrJ (72)

where

[w2(00). w3(02)1"'_ Jqr

The mechanical force vector f contains information on the boundary conditions and the thermal

loading effects generated by the applied temperature.

3 Higher-Order Theory: Efficient Reformulation

The basic equations of the original higher-order theory outlined in Section 2 will be contrasted and

compared with the reformulated equations developed in this section. The reformulation simplifies
the theory and makes it computationally more efficient, as will be demonstrated later. It must

be emphasized that the basic structure and concepts of the higher-order theory with regard to

the temperature and displacement field approximation based on the quadratic expansion in the

local coordinate system attached to a subcell's center, satisfaction of the governing field equations

(steady state heat conduction equation and equilibrium equations) in a volumetric sense, and the

interracial continuity and boundary conditions in a surface-integral sense, do not change. The
major changes involve

• simplification of the volume discretization by eliminating the concept of generic cells, leaving
only subcells as the basic building blocks of the material's microstructure

• replacement of volume-averaged heat flux and stress quantities defined in Section 2 by Eqs. (5)

and (40), respectively, by surface-averaged quantities (temperature and heat flux for thermal

analysis, displacements and stresses for mechanical) associated with subcell interfaces as the
fundamental unknown quantities

The above changes set the stage for reformulating the higher-order theory based on the local-

global conductivity and stiffness matrix approaches described in the following subsections. As

shown in Fig. 2_ the microstructural pattern of the heterogeneous composite functionally graded

in the x2 - x3 plane is represented by discretizing the cross-section into NZ and N_ subcells in the

intervals 0 _< x2 _< H, and 0 < x3 _< L, respectively. The thermomechanical properties within a

subcell are assumed to be constant. The composite is assumed to be infinite in the x l directiom

whereas the dimensions of the subcell along the functionally graded directions x2 and x3 are hz,
17, and can vary arbitrarily such that

N_ N_

(73)
_=I _=I

The composite is subjected to a combination of surface displacements and/or tractions applied

in the x2 - x3 plane along with a uniform strain fit ( _ll - O, for plane strain) in the xl direction.

An arbitrary surface temperature or heat flux distribution may also be prescribed.
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l
>1

Fig. 2. Reformulated HOTFGM-2D representation of a composite functionally graded in the x2

and x3 directions with uniform microstructure in the x l direction.

In the case of the original higher-order theory, the global conductivity matrix relates the heat
T(_,_)flux defined at the boundaries to the microvariables (ran) and the global stiffness matrix relates the

W(_,_)tractions applied at the boundaries to the microvariables i(mrO" In contrast, in the reformulated
version the global conductivity matrix relates the heat flux defined at the boundaries to the common

interracial surface-averaged temperatures and surface-averaged temperatures at the outer surfaces.
The global stiffness matrix relates the tractions at the boundaries to the common interracial surface-

averaged displacements and surface-averaged displacements at the boundaries.

3.1 Motivation for Reformulation

The motivation behind the reformulation of the higher-order theory is to decrease the number of

equations in order to make it computationally more efficient. This is achieved by using the local-
global conductivity and local-global stiffness matrix approach. This approach involves formulation

of a local conductivity matrix that relates heat fluxes to temperatures, and a local stiffness matrix

that relates tractions to displacements, evaluated at the external boundaries of each subvolume,

and has been described in detail by Pindera (1991) in the context of mechanical boundary-value

problems. In the reformulated version of the higher-order theory, the local conductivity matrix

relates the surface-averaged fluxes to the surface-averaged temperatures for a particular subcell

(B, 7), accounting for the satisfaction of the steady-state heat conduction equation. Similarly, the

local stiffness matrix relates the surface-averaged tractions to the surface-averagext displacements

for a particular subcell (fl, 7), accounting for the satisfaction of the global equilibrium require-

ments in a Volumetric sense. Once the local conductivity and stiffness matrices are formed, we
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use them to construct the global conductivity and stiffness matrices. Here, we enforce the traction

and displacement (heat flux and temperature for thermal analysis) continuity conditions at the

interfaces of the adjacent subcells in an average sense, thereby reducing the size of the global

conductivity matrix and global stiffness matrix by more than fifty percent.

When the composite is discretized into NZ and N_ subcells in the x2 and x3 directions, respec-

tively, the rank of the global stiffness matrix in the original higher-order theory is IONzN.y since,
according to Section 2, each generic cell contains 4 subcells. As we shall see in this section, for the

same number of subcells in the x2 and x3 directions, the rank of the global stiffness matrix in the

reformulated version is reduced to 4N_N_ + 2N_ + 2N_ (4N_N_ + 2N_ + 2N_ + 1 for generalized

plane strain). Thus for higher values of NZ and N_, the rank of the global stiffness matrix is reduced
by approximately sixty percent as shown in Figs. 3 and 4.

where k} z'_)

Eq. (74) for the assumed temperature field in the above equation and simplifying, we get

3.2 Thermal Reformulation

The temperature distribution T (z,_) in the subcell (/3, 7) measured with respect to the reference

temperature T_ef is approximated by the same second order polynomial expansion in the local

coordinates _Z), _) as that given by Eq. (2), reproduced below for convenience

T(_,_) _ T(_,_) _(_)_(_,n) _(_)_(_,_) 1 (_ h_--_(00)-_-'2-_(10)-_-_3 _(01)+_(32-- )2 _n-(Z,_) 1(32 )2(_
/_ _n'(Z,_)

J_ (20) + _ _- J_ (02) (74)

As given in Eq. (4), the heat flux at any point passing through a subcell (/3, 7) is dictated by the

Fourier's law of heat conduction,

) , (i- 2,3; (75)

are the heat conductivity coefficients of the material in the subcell (/3, 7). Substituting

-k_ z'_) (T_)+ 3_ z) _(z'_)_(20) )

--(_)_(_,n)_

(76)

(77)

As mentioned earlier, the reformulation employs surface-averaged quantities in contrast with

volume-averaged quantities in the original formulation. Hence, the surface-averaged temperatures
and surface-averaged heat fluxes at the outer faces of the subcell are defined below. The surface-

averaged heat flux Q2 (z'_) going into the left face of the subcell (/3, 7) is defined as

0_(_,'_)_ i f 1_/2 q_,_/)(__ 2_n))d2_ "_)
T_ J-l_/2

(78)

r5+(Z,_) going out of the right face of the subcell (/3 7) is defined asThe surface-averaged heat flux _2

Q+(_,n)_ 1 f_n/e q_,n)(_h__ 21n))d2_n) (79)
-l-_ d _ ln / 2

The surface-averaged heat flux Q3 (z'_) going into the bottom face of the subcell (/3, 7) is defined as

(so)
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The surface-averaged heat flux Q+(Z'_) going out of the top face of the subceLl (/3, 7) is defined as

0+(_,_)_ 1 fh_/2 q(_'_)(2(_) l_ d2(_ )
h-_ J-h,�2 ,-_) (81)

Substituting Eq. (76) into Eqs. (78) and (79), and Eq. (77) into Eqs. (80) and (81), and performing
the required integrations, we obtain

(_2(_'_) -- -k2(Z'_) (T(z'_)-(10) 3hzT(Z'_))2_(20) (82)

_(_0) -_ (:o) / (83)

_(0_) _ _(02) / (84)
\

Assembling Eqs. (82) - (85) in matrix form, we have

(_2" = 1 3__ T(2o) (86)

(_3 = 1 - 32_---_ T(02) (87)

Equations (86) and (87) relate the surface-averaged heat fluxes to the microvariables T (_'_)
(m_)"

Next, we express the microvariables T(m5'_) in terms of the surface-averaged temperatures in order( )
to form the local conductivity matrix that relates the surface-averaged fluxes to the surface-averaged

temperatures for a particular subcell (/3, 7). Hence, we proceed to define the surface-averaged tem-
peratures as we have defined the surface-averaged heat fluxes above. At the left face of the subcell

(/3,-y) i.e. at Z(Z)= -hz/2, the surface-averaged temperature 5>2-(z'_) is defined as

_2_(_,_ ) 1 fg12 (88)

Similarly, at the right face of the subcell (/3, _/), the surface-averaged temperature T+(Z'_) is defined
as

_+(_,,) _ 1 ft_/2 T(_,,)(h _ 2(')) d2(') (89)
- l_ J__Lr/2 T'

At the bottom face of the subcell (/3, 7), the surface-averaged temperature 5>3(_'_) is defined as

1 fh,/:-- T(_,_) (2(_)l_d2 ? )

At the top face of the subcell (/5, _), the surface-averaged temperature :F+(5'_) is defined as

-__ T(,,_)(2(, ) l_ d20) (91)
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Substitutingthe expression for T (z,_) given by Eq. (74) into the above definitions and performing
the averaging procedure, we obtain

:_2+(z'_) (93)

T[(Z'_) (94)

2_2-(Z,_) _ T(Z,?) hz T(Z,?) h_ T(Z,?)
"(00) -- -_- (10) + 4_(20) (92)

__ h2
_ ,-r(_,_') ,-r,(/_,?) /_,r(/_,_)
- _(oo) + +_(_o) -_ (2o)

2

-- _(_,?) In _r(_,'Y) 1_7,(_,?)
"(00) 2 -(0_) + _-(02)

2_+(Z,_) _ T(Z,n) /_T(Z,_) l_ (Z,_)
- _(oo) + _-(o_) + _T(o2) (95)

Assembling Eqs. (92) - (95) in matrix form, we have

[ h___ h__ ] iT(m)](Z,? ) [T(oo) ](;_,-y)= _h__ _ T(:o) + 7'(o0) (96)

[- T(oo) ] (97)

Adding and subtracting Eq. (92) and (93), we obtain

4 o]T(oo)
(9s)

Similarly, adding and subtracting Eq. (94) and (95), we obtain

[T(°') (_'_) [ ±-±]T(o2)] - __ 8_ [.22__]
4

l_[ 07'(00)] (99)

Equations (98) and (99) relate the first and second order microvaxiables to the surface-averaged
temperatures and the zeroth order microvariables. In order to express the first and second order

microvariables solely in terms of the surface-averaged temperatures, we make use of the volume-
averaged steady-state heat conduction equation.

3.2.1 Heat conduction equation

The heat flux inthe material occupying the subcell (/_, 7)inthe region [5(Z'?)[ _< ½hz, ]_(3Z"_)[ _< ½1?,

must satisfy the steady-state heat conduction equation given by Eq. (3), reproduced here for
convenience, in a volumetric sense

cOq(__'_) c9q(3_,_)

02(_ ) + 0_(? ) :0 (100)

Substituting Eqs. (76) and (77) for the heat flux in the 22 and 23 directions, respectively in the

above equation, performing the required volmnetric averaging and simplifying, we get

[k2T(20) -[- ]g3T(02)] (/3'_) -- 0 (101)
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Substitutingthe second-ordermicrovariablesT(Z'_)and T(Z,_) from Eqs. (98) and (99) and simpli-_-(2o) -_(o2)
fying, we obtain

where

(#,_) _ k (z'_)

- __ h 2
k(#,_) _ k_,_) +

127'_3

Substituting Eq. (102) into Eqs. (98) and (99) and simplifying, we obtain

(102)

(103)

I 1-2k(sz") [ T+T2- (#'_) 2k(_'_) 1 1][ T+T3 ] (104)

[ T(°I) (#"_) I1T(o2)] -- l__(_,'Y)2t:(_"_)_-z__(#,'Y)2a(_'_)! 1 - (#'_)2k(Z'_)[T+_'3] - k(#'_) 127[1001 ][ T+_'2"-]- (_'_) (105)

T(Z,_)Equations (102), (104) and (105)express the microvariables (ran) explicitly in terms of the surface-

averaged temperatures. Substituting Eqs. (104)and (105) into Eqs. (86) and (87)and simplifying,
we obtain the local conductivity matrix as shown below

where

(#,_,) - .
Q-+ (_") _,, _,2 _,3 n,._ T+

_ Q2

_ Q3 t_41 t_42 tZ43 tZ44 2 3

(106)

a(Z,'r) _ _.(._,7)
12 '_21

22 =- _ + 12_(Z,_)

1 3h#k(3#'_)

a(#,_) _ _.(#,'_)
13 '_14

_ _.(#,'r) _ _.(#,'9 _ 3h_ k(#'_r) k(#"9
' _23 '_24

and

a(#,_) _(#,_) k(3Z,_) / 1 3k2(_'_))= : :_

a(#,,) _ _.(#,,)_k(Z,,) (13k (z''))_2 '_2_ l_, l_,k(_,*r)

a(#,_) _ a_,'_) _ _.(#,_) _ _.(Z,_r) 3k(#'_/)k(#'_)
31 '_41 '_42 - 17k(#,7)

Therefore, we have formulated the local conductivity matrix which relates the surface-averaged

heat fluxes to surface-averaged temperatures. The next step is to assemble the global conductivity
matrix using the interfacial continuity conditions and the boundary conditions.

NASA/CRy2002-211909 21



3.2.2 Temperature conthnuity conditions

The temperature continuity at the interfaces between adjacent subcells is applied in an average

sense. Considering the/_th interface, which is the interface between the subcells (/3, 7) and (/3+ 1, 7),

the surface-averaged temperatures in the x2 direction, _+(Z,?) and T2--(z+l'?) must be equal. Hence,
we can represent them using just one variable, i.e.

_+(_,_) _ _2-(Z+l,_) _ _(/J+l,_) (107)

Similarly, considering the 7 th interface, which is the interface between the subcells (/3, 7) and
(/3, 7 + 1), and applying the temperature continuity in the x3 direction

= = (108)

Equations (107) and (108) are similar to the temperature continuity conditions (19)-(22) in Section

2. Equations (107) and (108) hold true for/_- 1, ..., NZ- 1 and 7 - 1, ..., N?- 1, respectively.
This gives rise to (N/3 - 1)N? +(N?- 1)N/_ unknown surface-averaged temperatures defined at the

subcell interfaces (both in x2 and x3 direction). The quantities

define the surface-averaged temperatures at the external boundaries of the composite. These quan-

tities are either known or unknown depending on whether the temperature or heat flux is defined
at the external boundaries.

3.2.3 Heat flux continuity conditions

The heat flux continuity at the interfaces between adjacent subcells is applied in an average sense.
Considering the/3 th interface and applying the heat flux continuity in the x2 direction

(_+(/_'_) - (_2 (z+l'?) -- 0 (109)

where @+(/_'?) is the surface-averaged heat flux going out of the right face (72 - h/_/2) of the subcell

(/3, 7) and _)_(Z+I,?) is the surface-averaged heat flux entering into the left face (x2 - -hz+l/2)

of the subcell (/3 + 1, 7) defined by Eqs. (79) and (78) respectively. Similarly, considering the 7 th
interface and applying the heat flux continuity in the x3 direction

O+(/_'7) - Q3 (z'n+') - 0 (110)

Equations (109) and (110) are similar to the heat flux continuity conditions (11) - (14). Using the

local conductivity matrix (106), Eqs. (109) and (110) can be expressed in terms of the surface-
averaged temperatures

11 + "q2 + '_'13 -1- '_I4 + +

_(_+l,_,),_-(_+t,?)
(111)

31 -I- + '_33 _ 3 + '_34 +- '_'41 +

n(;_,_,+_)7_2--(_,_+_) ,,.(_,-r+t) (_,_,+_) ,,.(_,_,+_)_-(_,_,+_)42 + '_43 T3+ + 'o44 = 0 (112)
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Usingthe temperaturecontinuityconditionsgivenby Eqs. (107)and (108),Eqs. (111)and (112)
canbesimplifiedandwritten in termsof the commoninterracialsurface-averagedtemperatures

12 + [_11 + t_22 '_21 + "14 +

13 -i-3 + '_24 + "_23 - --" 0 (113)

(114)

Thus, Eqs. (113) and (114) provide us with a total of (N 3 - 1)N. r + (N.y - 1)N 3 equations in terms

of the common interfacial surface-averaged temperatures and the surface-averaged temperatures at
the external boundaries.

3.2.4 Bomadary conditions

At the external boundaries of the composite, we have 2(N 3 + NT) faces of the subcells where either

the heat flux or the temperatures are defined. This gives rise to additional 2(N 3 + NT) unknown

surface-averaged quantities. The additional 2(N 3 + NT) equations are obtained from the imposed
boundary conditions given by

_(_,_) - T(_)_left(X3) (115)

_2(Nz''_) ,-r,(_)-- -_,_om(x3) (116)

where _'(_) _'(_)
_left(X3) and (x3) are the piece-wise uniform applied temperatures on the external, 2 right

boundaries in the x2 - x3 plane. Similar reasoning holds for subcells (3, 1), and (/3, NT) and the
applied boundary conditions are given by

_3(Z,_) = w(3) (117)

(118)

If the heat flux at any of the boundaries is defined instead of temperatures, Eqs. (115) - (118) are
modified accordingly.

Note that, at least one T(') and at least one T(') at the external boundary need to be defined

in order to prevent matrix singularity. If only heat flux is defined at the external boundaries,

theoretically it gives rise to the possibility of having more than one temperature distribution. This
is analogous to the rigid body motion if only tractions are defined at the external boundaries and

not a single point is fixed in space.

3.2.5 Solution for the surface-averaged temperatures

Equations (113) and (114) together with the imposed boundary conditions (Eqs. (115) - (118))

provide us with the necessary (X 3 + 1)N7 + (N7 + 1)N 3 relations for (N 3 + 1)N7 + (N7 + 1)X/_
unknown surface-averaged variables (i.e., (N 3 - 1)N7 + (N7 - 1)N 3 unknown common interracial

surface-averaged temperatures along with 2(N 3 + NT) unknown surface-averaged temperatures
and/or heat fluxes at the external boundaries).

The final system of equations is symbolically written as

m

_T-Q (119)
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In the above equation, _ is the global thermal conductivity matrix obtained after assembling

the local conductivity matrices given by Eq. (106) using the local-global conductivity matrix

approach as explained above. The matrix _ essentially contains information on the geometry and

thermal conductivities of the individual NzN_ subcells. The general format and assembly of the

global_ thermal conductivity matrix _ has been summarized in the next subsection. The vector

T contains the unknown surface-averaged temperatures at the subcell interfaces and the surface-

averaged temperatures at the outer edges of the composite (some of which are known), and is given
by

-E¢: ..-, ...,
where

The surface-averaged heat flux vector (_ contains information about the piece-wise uniform heat

fluxes defined at the external boundaries of the composite and consists mainly of zeros which are

obtained after applying the interracial heat flux continuity. It is given by

where

- 0,...,0, - 0,...,0,
Once Eq. (119) is solved for the surface-averaged temperatures at all the subcell interfaces and

external boundaries, we substitute the surface-averaged temperatures back into Eqs. (102), (98)
and (99), and obtain the microvariables T (z'_)

(ran) which define the temperature field in each subcell.

3.2.6 Assembly of the global thermal conductivity matrix

The general format and assembly of the global conductivity matrix _ is summarized in this sub-
section. _ consists of four submatrices

where _ll and _22 relate the quantities in their respective directions and have entries concentrated

along the diagonal.The submatrices _12 and _21 represent the coupling of field variables in the x2

and x3 direction and have entries scattered throughout. The global thermal conductivity matrix

is a square matrix of size [N_(N_, + 1) + N_,(N_ + 1) × N_(N_ + 1) + N_,(N_ + 1)]. The structure
of the submatrix _11 is shown below

tell =

m

A_l)_ 0 0 0 0 0 0 0

0 A_"_)'- 0 0 0 0 0 0

0 0 . 0 0 0 0 0

0 0 0 . 0 0 0 0

0 0 0 0 . 0 0 0

0 0 0 0 0 . 0 0

0 0 0 0 0 0 . 0

0 0 0 0 0 0 0 A (N_)
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where the size of _,, is [NT(Nz + 1) × NT(Nz + 1)]. The structure of the submatrices A (7) is
shown in the appendix. The structure of _22 is similar to _ tl. The structure of the coupling matrix
_12 is shown below

_g12

where the size of _,2 is [NT(Nz + 1) × Nz(N7 + 1)]. The structure of the submatrices B(27z) is
shown in the appendix. The structure of _21 is similar to _12.

3.3 Mechanical Reformulation

The displacement field in the subcell (/3, 7) of the composite functionally graded in x2 - x3 plane

is approximated by the same second-order polynomial expansion in the local coordinates _(_), and

2(37) as that given by Eqs. (32) - (34) in Section 2, reproduced below for convenience

u[Z,_) -- xl¢ll (120)

2

u (z,'r) - vv(Z,,),,2(00) + 5(Z) w(Z,,),,2(m) + _('r)u/(Z'_/)_3"' 2(o,) +51 (3_(;3)2 h_),,4 2(2o) 5 4 ," 2(02) (121)

"" 3(00) + "" 3(10) + " 3(01) + 2( )" 3(20) + 2( "4 )'" 3(02) (122)

For plane "deformation (plane strain) case

_t_ --0 (123)

and for generalized plane strain, _11 is determined from the condition

N, N, fh,/2
"_1 _=1

cr(Z,-_)-- (Z)-- (,)
ij ax 2 ax 3 -0 (124)

For an orthotropic elastic material occupying the subcell (/3, 7), the stress components are
related to the strain components through the familiar Hooke's law

0.(/_,7) _ (7(_,7)_(_,_') _ o.T(_,7)
i_ "_ij_z _kZ i3 (125)

C_(Z'_) the stiffness tensor elements for the material occupying the subcell (/3, 7), _(Z'_)kl are zij are the

elastic strain components, and crT(aZ_)_aare the components of thermal stress vector given by

T(Z,_) = F_j(Z'_)T(Z'_) (126)

NASA/CRy2002-211909 25



whereF(Z'_)ijis the product of the stiffness tensor components and thermal expansion coefficients
_ (Z,_)
_ij , and T(z,_) represents the temperature change at a particular location in the composite.

The components of the strain tensor in the individual subcells are obtained from the strain-

displacement relations,

10u! _'_') ,:, (_,'9
_ (13 ,.y) --- _ __J Ott i

ij 2 ( 0_}. ) + 0_j..) ) (127)

Substituting Eqs. (121) and (122) into Eq. (127) and simplifying, we get

E(Z,_) _ T_;(Z,_) 35(2Z)w(Z,_)22 - 2(to) + "2(20) (128)

_(Z,7)_ w(Z,7) 3_(2Z)Hz(Z,7)33 - 3(0_) + ""3(02)

¢,_,,)_ 1 [W,#," _) + 3_(3_')w"`z,7, W'Z,:_ + 3_(2Z)w `z,7,]23 - _ 2((}1. "2(o2) + 300 "'3(20) J

(129)

(130)

T
I

Fig. 5. Schematic of a subcell (/3, 7) showing the surface averaged tractions and displacements
defined in the reformulated HOTFGM-2D.

The local stiffness matrix relates the surface-averaged tractions to the surface-averaged displace-

ments on the subcell's faces as shown in Fig. 5. The surface-averaged tractions are determined

using the familiar expressions for tractions given in terms of the stress components

_ (131)

where nJ z'7) are the components of the unit vector normal to the face of the (/3, 7) subcell. At the

left face of the subcell (/_, 7), the surface-averaged tractions [22-(/_'_) and [2-(_,_) are defined as

[_-(Z'_' - lf_/2t_(Z'_'(-_ 2(_')d2 (_, (132)
l_ J-_/2

[23-'_'" - l f"/2 ta(Z'"(-_ 2(")d2(" (133)
l_ _-_/2
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proceed to define the surface-averaged displacements. At the left face of the subcell (/3, 7), the

surface-averaged displacements _-(_'_) and _3 -(/_'_) are defined as

- h_,2(3-_)1 f,n )d2(_)
1-_ J -l_/2

Similarly, surface-averaged displacements at the right face of the subcell (/3, _) are defined as

_+'_,_')_ i f t_,2 u(_,_,)(__ 2(n))d2(n)
J-_12

In J-_/2

Surface averaged displacements at the bottom face of the subcell (/3, 3') are defined as

_3-(_,,) _ 1 ;h_/2 u_ '_') (x(/_) ln )d_'(/_)
u2 - '--2

_3-(_,,)_ 1 l, d2y )

Surface averaged displacements at the top face of the subcell (/3,-y) are defined as

_3+(Z,,)_ 1 fhjl2 u?,,)(27 ) 1.y d2(Z )

_3+(,,_,) _ 1 fh,/2 u (_'_') ("2(_) l_,)d5:(Z )
h_ J -h_/2 '-ff

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

Substituting the expressions for u_z''_) given by Eqs. (121) and (122), and performing the above
averaging procedure, we obtain

2
_2-(_,_) _ vv(#,_) vV(Z,_ ) hz W(Z,n )
u2 - 2(oo) - ""2(m) + -_ 2(20) (152)

_2-(_,_) (_,_) h_ w(_,_) _ (_,n)U3 -- W3(O0) - -'_- - 3(10) -_- W3(20 ) (153)

u2 - 2(oo) + ""2(1o) + - 2(20) (154)

h 2
-2+(/_,-r) _ w(/_"r)3(oo)h/_ W(/3,3,)3(10) /3 W(/_,n)3(20) (155)u3 -+ -_- + _-

2

g_-(_,_/) - w(_,_D In w(_,n) l_ w(_,n)
- 2(00) _ - 2(ol) + _-"" 2(02) (156)

2
-3--(/3'n) (_,_') In w(Z,n) In Hz(Z,'_)
u3 = W3(00) - -_- 3(0i) + -_ "' 3(02) (157)

2

fi#+(Z,_) _ w(n,_)_2(oo) + 2-:-"l_/w(Z,n)2(o_)+ 4-"1_l/l/.(_,,,/)_,2(02) (158)

2

-3+(Z,n) _ T,,V(n,_) In w(Z,'_) In W(Z,n )
u3 - 3(oo) + -:- + -:-3(01) 3(02)Z 4

(159)
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I' 'I[- _ _- -

_44 0 0
+ &33

_2 _(_,_) 1 1 _2-
'_3-_33

0 7 (_,'Y)
I (179)

[ W2(o_) ] (z'_)
W2(o2) I ' : ]

12 C'(2_''r, l_ _,_} .y) _3-- --

2_-(_")[ ] [_i+] (_,') - ]
_22 0 0 5:3ah_ 0

12_(_,W) 1 1 g_- + l---_ i T(m)
22

(180)

Equations (177) - (180) relate the microvariables to the surface-averaged displacements and the

first order temperature microvariables. Now we can obtain the local stiffness matrix for the subeell

(/_, 7) by substituting the above equations into Eqs. (140) - (143). Note that the terms involving

the first order temperature microvariables can also be expressed in terms of the surface-averaged

temperatures by making use of Eqs. (98) and (99). After simplification, we obtain

" Kll K12 0 0 K15 K16 K17 KI8 " (Z'_) _ 52+ " (Z,_)

/(21 K22 0 0 /(25 K26 K27 /(28 _2-

0 0 K33 K_ K_ /(36 K3_ h_ _+

0 0 /(43 /(44 /(45 /(46 K-17 K48 _2-

/<5,K_ K_3 K_ K_ K_6 0 0 _+
K_, /(62 /(63 K_ K_ K_ 0 0. _-

/(71 /(72 /(73 /(74 0 0 /(77 /(78 _3+

Ks, Ks_ K8_ K8_ 0 0 K8_ Kss_ _-
- F_I F_2 0 0 " (/3,7)

F21 F22 0 . 0

0 0 F33 F_

0 0 F43 F._

F_ F52 0 0

F6_ F62 0 0

0 0 F73 F74

0 0 F83 F84

+

(181)

where

- _+

_+

_+

_+

r,(_,'r) _(_,'r)
"-"22

_'-"22 (4-3 )- K (_,_')
" h_ ,,_(_,-r)

_22

_(_,'r) _(_,-_)
_ h,-(3,7) "-_22 (2 _ a_22

_'2_ h_ " (_(_,'_))
"_22

(Z"_) m(/_"r) h
22 _ 44 ,3K(_,_) _ _(_,_)_ _(_,_)_ _(_,_)

15 "16 "'25 "26 -- --

2 _

_(_,_)
W ('3'7) -- T--C(_'7) W(,3,7) __ W'(_,7) "-123
"_17 --_18 -- --'_ _27 _28 --

1._
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and

3

1

,_(_,7) ,_(_,n)
_ _(_,'_) _ _4_(4_ aY44 )

"J23

_(_,n) _(_,7)
_-(_,n) _ _(_,7) _ "_4__4__4(4 - 3'_44

,,.(_,'0 C(3,n)
rc(_,n) _ _(_,'y) _ "_44 (2 44
"•56 .`•65 17 - 3#. (_,7) )

"J 32

,-, p(_,7)
_33_44 17(_,7) _ _(_,n) _ _(_,7) _ _,.(_,-_)

3 .` •74 .`•83 .`'84 -- -- (_a3(_,7)

_(_,_) _(_,'9
33

_•77 .`•88 17 --&(_,.y) )
"-_33

(_(_,7) _(_,7)
_.-,n,_ _ rc,_-,'_,__ "_33 (2 - a

K..../ 33

"Ts "'sT 17 " d,(Z,7) )
"-'/33

f,(_,'_)
p(_,')') p(_,7) ,_- (_,'Y) "122 f7(_,7)
-- II -- ----22 --- 00_22 ( 2 "-"22 )

-- (_,_)_(_,7)
r(a,7) _ r(Z,7) °_22 "--/22
_-21 --'-12 -- 2

•,- (Z,7)_(Z,7) h_
r(_,_) - _F_,_) -- P(_,_) r(_,_/) 00_23 _4433 _43 -- --_44 --

2/.,/

r(_,7) .... r(_,7) r(3,7) r(a,7) _ 3_ 'n)'--'44_(a'n) 17
--51 _52 _61 --_62

2h_

(_,_)
73

(_,7)
83

,_(_,'_)
r(_,_) _- (_,7) _33 _(_,n)

= --84 ( 5 )

_ r(Z,7) _ 3&_ '7) _(_,7)._33
-- _74 2
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3.3.2 Displacement continuity conditions

The displacement continuity at the interfaces between adjacent subcells is applied in an average

sense. Considering the/3 th interface, Fig. 6, the surfac_averaged displacements in the x2 direction,

fi2+(Z,_) and _2-(#+1,_) must be equal. Hence, we represent them using just one variable, i.e.,

_2-(_+2 l,-y) _ u2 (182)u2 __ _2(_+1,_)

Similarly, applying the continuity of surface-averaged displacements in the x3 direction at the 3th
interface

Considering the 7 th interface, the surface-averaged displacements in the x3 direction, _3+(Z,7) and
_3-(#+_,_)

3 , must be equal and therefore can be represented using just one variable, i.e..

u3-3+(9,_)_ _3-(z,_+,)_ _3(z,_+,) (184)

Similarly,applyingthe continttityof surface-averageddisplacementsin the x2 directionat the 7th
interface

_3+(/3,7) __ u2=3--(/3'7+ l) ---- _2_3(_'7+ 1) (185)

Equations (182) - (185) are similar to the displacement continuity conditions, Eqs. (59) - (62),

in Section 2. Equations (182) - (183) and (184) - (185) hold true for/3 - 1, ..., N# - 1 and 7 -

1, ..., N7- 1_respectively. This gives rise to 2(Nz - 1)N7 + 2(N 7 - 1)Nz unknown surface-averaged

displacements defined at the subcell interfaces (both in x2 and x3 directions). The quantities

_3(_,1) =3(_LN_ + l) =3(/3,N_ + l)
3 u 2 ' _ zt 3

define the surface-averaged displacements at the external boundaries of the composite. These

quantities are either known or unknown depending on whether tractions or displacements are
defined at the external boundaries.

tT_+(Z,r) + _2q#+_.r) = 0

A "

Fig. 6. Traction and displacement continuity applied at the interface of the subcells in an average
sense.
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3.3.3 Traction continuity conditions

The traction continuity at the interfaces between adjacent subcells is applied in an average sense.

Considering the _th interface, Fig. 6, the continuity of tractions in the x2 direction is ensured by

_2+(_,7) {22-(_+_,7)t2 + = 0 (186)

where _2 (z'7) is the surface-averaged traction at the right face (x2 - hz/2) of the subcell (/_, 7)and

_2 (z+I'7) is the surface-averaged traction at the left face (x2 - -hz+_/2) of the subcell (/3 + 1,7) in

the x2 direction, defined by Eqs. (89) and (88), respectively. Similarly, the continuity of surface-
averaged tractions at the ,3th interface in the x3 direction is ensured by

_2-(_+t,n) = 0{2+(Z,7) +_3 (187)

Considering the 7th interface, and applying the continuity of tractions in the x2 direction in an
average sense we obtain

:3+(Z,_) _3-(_,n+l) _ 0t2 + _2 - (188)

The continuity of surface-averaged tractions in the x3 direction at the 7 th interface is ensured by

_-3+(/3,'y) __ {3--(/3,_/+1) = O (189)

Equations (186) - (189) are similar to the traction continuity conditions, Eqs. (51) - (54), in

Section 2. Using the local stiffness matrix (181), Eqs. (186)-(189) can be expressed in terms of the
surface-averaged displacements

(K,,_::++K,:_-+K,_++K,_- +K,_-_++K,8_-)(_,_)+
(K_,_++ K=_- + K_] ++K_@- + _:_3++ K_8_-)(Z+,,_)=

(r,,_+ + r,2_:-)(z,_)+ (r2,_+ + r=_:-)(z+,,_) (190)

(_=_+ + K_- + __]+ +K_@- + __+ + __-)(,,_)+
(K_+ + K__- +K_ ++ K_- + K_]+ +K__-)(_+"')=

(191)

-- _2+ ,r _3+

(K_,_++K_- + K_+ + K__- +K_+ + K_@-)(_,_+')=

(192)

(K,,_ + + _:_]- + K__ + + K__- + __+ + K__-)("_)+
(_,_+ + K_:_]- + K_ + + K8_- + _8_ + + K_3_-)(',_ +') =

(F732_3+ + F742_3) (_'7) + (F832_+ + F842_3) (_'7+') (193)

Using the displacement continuity conditions given by Eqs. (182) - (185), Eqs. (190) - (193) can
be written in terms of the common surface-averaged displacements

K(Z,n)fi22(Z,n) (_(Z,_) K(Z+_,n) =2(Z+t,n) _((Z+l,n):2(Z+2,n) _(Z,n)_23(Z,n)

,): 3(_3,-,/+1) _,-(_3+1,3,)_(_3+ 1,3,) K (_3+1,3,):3(Z+ 1,-),+1) _(_,3') _3(Z,3')5 u2 + _'26 + 25 u2 +"_8 +

F(Z+t,7) _(Z+2,7)_,2_(_'7)2_(Z'7)+ ,-,t(r(_'7)+ -22r(_+"7))_(_+"7) + 2, (194)
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+_•33 + 44 ) +-_43 +'_36 +

K(_+,,_)_3(_+,,_) _(_,_)_3(_,_+,) w(_+,,_)_3(_+,,_+,) w(_,_)%3(_,_)46 '*2 + _ _ u2 + "" 45 + _- 38 +

"'48h"(3+1'7)u3(3+1'7) + _'37h'(3'7)_3(3,7+1) + K(3+I'7)_3(3+l'7+I)47'*3

3-1 _3 +_33 + + 43 (195)

Ks(_,7)_(_,n) _(_,7)_(_+_,7) ;r(_,7+1)-2(_,7+_) rr(_,7+1):.2(_+_,7+1)2 -+- "_51 -{- " _'62 U2 + 1_61 a2 -{-

4 U3 + 1 _53 u3 + W (3,74-1) =2(34-1,74-1)

K(_,_)_.3(3,n) f_(_,7) _(_,n+_),-3(_,_+t) K(_,_+t)_3(_,n+2)56 '_2 +_1•55 + +_66 )U2 65 --

52 + "-51 + "62 -+- "61 (106)

K72(3,7) _22(3,7) _ (3,7) -2(3+1,7) h_ (3,7+ 1) _2(3,7+1) w(3,7+ 1) a2(3+ 1,7+ 1)+ _'?1 u2 + _-82 + _-8t _2 +

4 + 1•73 + 1•84 "a3 + 1•83 _3 +

K_(a,_)_aa(a,n) cw(_,7) w(_,7+,),-3(_,_+,) w(_,7+,)_aa(a,7+2)s + _1•77 +-_88 )u3 + 1•87 =

74 + _73 +-s_ ) +-83 (197)

Thus, Eqs. (194)- (197) provide us with a total of 2(N 3 - 1)N 7 + 2(N 7 - 1)N2 equations in terms

of the common interfacial surface-averaged displacements and the surface-averaged displacements
at the external boundaries.

3.3.4 Botmdary conditions

At the external boundaries of the composite, we have 2(N 3 + NT) faces of the subcells where either

tractions or displacements are defined. This gives rise to additional 4(N 3 + NT) unknown surface-

averaged quantities. The additional 4(N 3 + NT) equations are obtained from the imposed boundary
conditions given by

t_(_,_) +(_)-- _e# (x3) (1OS)

¢(N_,_) +(n)
ti = %i_ht (x3) i -- 2, 3 (199)

where +(7) +(-_)
_left (X3) and (x3) are piece-wise uniform surface tractions applied on the vertical bound-Vright

aries in the x2 - x3 plane. Similar reasoning holds for subcells (3, 1), and (/3, NT). Alternatively,

if the displacements are specified on the vertical boundaries, then the applied boundary conditions
are given by

--3(3,1) _ U(3)- (200)

_3(Z,N,) _ (Z)= mop(X2) i - 2, 3 (201)

For other type of boundary conditions, the Eqs. (198)-(201) are modified accordingly.

Note that at least one _(') and at least one fi(') should be defined at the external boundary in

order to prevent rigid body motion.
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3.3.5 Solution for the surface-averaged displacements

Equations (194)- (197) together with the imposed boundary conditions (198)- (201) provide us

with the necessary 2(Nz + 1 )N_ + 2(N_ + 1)Nz relations for the 2(Nz + 1)N_ + 2(N_ + 1)Nz unknown
surface-averaged variables, i.e., 2(N_ - 1)N_ + 2(N_ - 1)N_ unknown common interracial surface-

averaged displacements along with 4(N_ + N_) unknown surface-averaged displacements and/or
surface tractions at the external boundaries. Also, the unknown uniform strain _ll is determined

from the generalized plane strain condition given by Eq. (124). For plane strain, _ll is zero.

The final system of equations obtained is symbolically written as

_ m

K U--t

In the above equation, K is the global stiffness matrix obtained after assembling the local stiffness

matrices given by Eq. (181) using the local-global stiffness matrix approach as explained above.

The matrix K essentially contains information on the geometry and thermomechanical properties
of the individual N_N. r subcells. The general format and assembly of the global stiffness matrix K

has been summarized in the next subsection. The vector U contains the unknown surface-averaged

displacements at the subcell interfaces and the outer edges of the composite and is given by

where

The surface-averaged traction vector t contains information on the applied boundary conditions
and the mechanical effects produced by thermal loading.

Once Eq. (202) is solved for the surface-averaged displacements at all the subcell interfaces and

external boundaries, we substitute the surface-averaged displacements back into Eqs. (171) - (172)
and Eqs. (164) - (167) and obtain the microvariables W (_'_)
in each subcell, i(mn) which define the displacement field

3.3.6 Assembly of the global stii_ess matrix K

The genera] format and assembly of the global stiffness matrix K is summarized in this subsection.
K consists of eight submatrices

g

KH 0 K_3 K_4

0 K22 K23 K24

K3_ Ka2 K33 0

K41 K42 0 K44

where Kl_, K22, K33 and K44 relate the quantities in their respective directions and have entries

concentrated along the diagonal. The remaining submatrices represent coupling of the field variables

in the x2 and x3 directions and have entries scattered throughout. The size of the global stiffness

matrix g is [2Nz(N_ + 1)+ 2N.y(Nz + 1)] × [2Nz(N_ + 1)+ 2N..r(N _ + 1)] for plane strain. An

additional row and column is added for the generalized plane strain case. The structure of the
submatrix K __ is shown below
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gll

-Ail)tl 0 0 0 0 0 0 0

0 A_I)'- 0 0 0 0 0 0

0 0 . 0 0 0 0 0

0 0 0 . 0 0 0 0

0 0 0 0 . 0 0 0

0 0 0 0 0 . 0 0

0 0 0 0 0 0 . 0

0 0 0 0 A_N'y) "0 0 0

where the size of K,, is [N.y(Nz + 1) x N.y(Nz + 1)]. The structure of the submatrices A_ ) is
shown in the appendix. The structure of K22, K33 and K44 is similar to KI 1. The structure of the
coupling matrix K13 is shown below

KI 3 m

B(tl) (t2) (1Yz) "
13 Bt3 ..... B13
(21) (22) (2N#)

B13 B13 ..... BI3

(Y,_) R (Y,2) R(N._N_)
BI3 *-'13 ...... 13

where the size of Kt3 is [NT(N _ + 1) × N/_(N 7 + 1)]. The structure of the submatrices B_ _) is
shown in the appendix. The structure of the. remaining coupling matrices is similar to K13.

4 Mesh-Sensitivity and Validation Studies

The two-dimensional formulation of the original higher-order theory was discussed briefly in Section

2. In Section 3, an efficient reformulation of the higher-order theory was developed and discussed

in detail. The procedure for determining the various field quantities using the reformulated higher-

order theory was also outlined in Section 3. The next step is to verify the efficiency and accuracy

of this reformulated version for various thermal, mechanical, and thermomechanical problems.

In this section, we investigate the convergence of thermal and mechanical field quantities with

mesh refinement and also verif T their accuracy upon comparison with analytical and finite-element
solutions.

4.1 Mesh Sensitivity: Thermal Problem

In this subsection, the convergence of temperature field with mesh refinement is investigated and

the results are compared with an analytical solution. The problem definition, investigated geometry

and meshing are shown in Fig. 7. As shown in Fig. 7 (a), the cross-section of the block has unit

dimensions in the x2 - x3 plane. The dimension of the block is considered infinite in the out-of-plane

(x l) direction which, however, does not play a role in the temperature field analysis. The block iz

subjected to a temperature of 100°C, which is held constant, at the left, top and bottom faces and

a temperature of 200°C at the right face. As shown in Figs. 7 (b), (c) and (d), the cross-section of

the block in the x2 - x3 plane is discr_ized into 4 x 4, 12 x 12, and 32 x 32 subcells, respectively,
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Fig. 7. Problem definition, investigated geometry and discretization used for mesh sensitivity

studies: thermal problem.
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of uniform size. The material within the block is homogeneous and the thermal conductivity is

taken to be 25 W/m-°C. However, the analytical solution of the Laplace's equation indicates that

the temperature field is independent of the thermal conductivity for the homogeneous case.

For the given boundary conditions, geometry and meshing, the temperature field was generated

using the reformulated higher-order theory. Analytical solution for the temperature field was ob-

tained by solving the Laplace equation using the standard Fourier series approach, Zhong (2002).
The contour plots of the temperature fields for the 4 x 4, 12 x 12, and 32 x 32 subcell meshes are

shown in Figs. 8 (a), (b) and (c), respectively, and are compared with the analytical solution shown

in Fig. 8 (d). As observed from the contour plots, the 4 x 4 subcell mesh approximates the actual

temperature field only in a rough sense. As the mesh is refined to 12 x 12 subcells, the temperature

field becomes almost identical with the actual temperature field except near the (1, 0) and (1, 1)

coordinates in the x2- x3 plane. These are the points of temperature discontinuity and hence

greater mesh refinement is required in order to properly capture the actual temperature near these

points. This is achieved with the 32 x 32 subcell mesh for which the temperature field, Fig. 8 (c), is
visually identical to the actual temperature field, Fig. 8 (d), obtained from the analytical solution.

Next, we consider the convergence behavior along several cross-sections. For the 4 x 4 subcell

mesh shown in Fig. 7(b), the cross-section along the line x3 = 0.25 happens to be the interface

between the subcells (1, _) and (2, _), and the cross-section along the line x3 = 0.5 is the interface

between the subcells (2, 7) and (3, _). Similarly, for the 12 x 12 and 32 x 32 subcell cases, the

cross-sections along the lines x3 - 0.25 and x3 = 0.5 run along the corresponding subcell interfaces.

The pointwise temperature distribution (also displacements and stresses) along each interface can
be calculated using the microvariables associated with the subcell on either side of the interface. In

general, the microvariables belonging to subcells on the opposite sides of the interface are different.

Therefore, the pointwise interracial temperatures calculated using the microvariables on either side

will be different since the thermal/heat flux continuity conditions across the interface are applied

in a surface-average sense. However, with the refinement in mesh, the interracial temperatures

calculated using the subcell microvariables on either side of the interface should converge. The

exception occurs when the interracial line happens to be the line of symmetry. In that case, the

magnitude of the subcell microvariables on the opposite sides of the interface is identical and hence

the interracial temperatures.

Figure 9 shows the temperature distributions along the lines x3 = 0.25 and x3 - 0.5. The

symbol T2 denotes the common interracial surface-averaged temperatures which are the basis of

the reformulation. The product of the global thermal conductivity with these interfacial surface-

averaged temperatures yields the applied thermal/heat flux boundary conditions. T + denotes the

interracial temperature obtained using the microvariables of the subcells lying below the interfacial

lines. T- denotes the interracial temperature obtained using the microvariables of the subcells

lying above the interracial lines. As observed in Fig. 9 (a), the temperature distributions along

the line x3 - 0.25 calculated using the subcell microvariables on the opposite sides of the interface

are quite different for the 4 x 4 subcell case. However, the interracial temperature distributions

tend to converge to the same values for the 12 x 12 subcell case and practically coincide for the

32 x 32 subcell case, Figs. 9 (c) and (e), respectively. Also, the surface-averaged temperatures (2P2)

tend to converge in a piece-wise uniform manner to the actual temperature distribution with mesh

refinement. For the cross-section along the line x3 = 0.5, the temperature distributions, T + and

T-, calculated using the subcell microvariables on the opposite sides of the interface are identical

even for the 4 x 4 subcell case, Fig. 9 (b). This is because the line x3 - 0.5 happens to be the

line of symmetry for the given boundary conditions and hence the microvariables belonging to the
subcells on the opposite side of the interface are identical. This provides an additional verification

of the results obtained using the reformulated higher-order theory.
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Fig. 8. Temperature field for mesh discretizations and boundary conditions given in Fig. 7 and

comparison with analytical solution.
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Figure 10 shows the temperature distributions along the lines x2 -- 0.5 and x2 - 0.75. These

cross-sections do not lie along the line of symmetry and hence the corresponding interfacial distribu-

tions exhibit trends similar to those observed in the cross-section along the line x3 - 0.25 described

above. The temperature distributions T + and T- calculated using the subcell microvariables on

the left and right sides of the interface, respectively, are quite different for the 4 x 4 subcell case,

Figs. 10 (a) and (b). These interracial temperature distributions tend to converge to the same

values for the 12 x 12 subcell case, Figs. 10 (c) and (d), and coincide for the 32 x 32 subcell case,

Figs. 10 (e) and (f). Also, the surface-averaged temperatures (T3) tend to converge to the actual
temperature distribution with mesh refinement.

Figure 11 shows the temperature distributions along the boundaries x3 - 0 and x2 - 1. As

observed in the figure, these distributions calculated using the reformulated higher-order theory

approach the applied boundary conditions with mesh refinement. However, they do not exactly

match the applied boundary conditions due to the presence of the temperature discontinuity at

the (1, 0) and (1, 1) coordinates. Virtually, an infinitely dense mesh near these points would be

required to exactly match the applied boundary conditions. Even in the case of the analytical

solution, a large number of terms in the Fourier series expansion is needed in order to obtain

converged solution near the points of temperature discontinuity. At the point of discontinuity,
however, only the average value is obtained according to the well-known theorem.

The interracial temperature distributions calculated using the subcell microvariables on the

opposite sides of the interface and averaged at each point across the interface are plotted along the

various cross-sections (along the lines x3 = 0.25, 0.5 and x2 = 0.5, 0.75) in Fig. 12. These plots were

generated for the different meshes considered above and the results are compared with the analytical

solution. As observed in these cross-sectional plots, averaging the temperatures calculated using

the subcell microvariables on the opposite sides of the interface produces acceptable results even for

the rough mesh as in the 4 x 4 subcell case considered here. The difference between the analytical

solution and the 4 x 4 subcell mesh is greater in the regions of high temperature gradients. Since the

considered cross-sections are removed from the points of temperature discontinuity, the temperature

distributions generated using 12 x 12 and 32 x 32 subcell meshes coincide with the analytical solution.

4.2 Validation: Thermal Problem

In the case of functionally graded materials, the microstructural gradation is typically varied gradu-

ally in a manner that depends on the boundary conditions in order to obtain the required optimized

composition profile. This results in continuous or discrete gradation of microstructure as described

in Section 1, and therefore continuously or discretely varying properties. In this subsection, a
heterogeneous composition with discrete variation of microstructure is considered. In order to

generate discretely varying thermal conductivity k, a continuous (exponential) function of spatial
coordinates is employed as a basis. The thermal conductivity is then calculated at the center of

each subcell according to the given function and is assumed to be constant within the subcell.

The results are compared with the finite-element solution obtained using ANSYS, and the effect of

thermal conductivity variation on temperature field and its gradients is discussed.

Four different thermal conductivity variations were considered. The problem definition, inves-

tigated geometry and meshing are given in Fig. 13. The investigated geometry and meshing are

the same for all four cases. The cross-section of the block has unit dimensions in the x2 - x3 plane

and is considered infinitely long in the out-of-plane (Xl) direction. As observed in Subsection 4.1,

the temperature field for the homogeneous case converged fairly well with the 12 x 12 subcell mesh

except at the points of temperature discontinuity, and it was identical to the actual solution for

the 32 x 32 subcell mesh. Therefore, in the cases considered here, the cross-section was discretized
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into 25 x 25 subcells of uniform size. In the first case, Fig. 13 (a), the block is subjected to a

temperature of 100°C, which is held constant, at the left, top and bottom faces and a temperature

of 200°C at the right face. The thermal conductivity k (W/m-°C) is assumed to be exponentially
increasing in the x2 direction according to the function

1 e5X2
k(x2)- _ (203)

In the second case, Fig. 13 (b), the applied temperature boundary conditions remain the same but

the thermal conductivity k is assumed to be exponentially decreasing in the x2 direction according
to the function

k(x2) - 60e -5_2 (204)

In the third and fourth cases, the block is subjected to a temperature of 100°C, which is held

constant, at the left and top faces, and a temperature of 200°C at the right and bottom faces.

The thermal conductivity k is assumed to be vary exponentially in both the x2 and x3 directions
according to the functions

k(x2, x3) -- lOe -2x2+2x3 (205)

and

k(x2, x3) - 10e 2x2-2_3 (206)

4.2.1 Reformulated HOTFGM and finite-element comparison

The temperature field calculated using the reformulated version of the higher-order theory is com-

pared with the finite-element solution. The finite-element solution was obtained by simulating the
above cases in ANSYS using 8-node thermal elements called Plane77. The mesh discretization used

in the finite-element analysis is the same as that used in the reformulated higher-order theory. Also,

the Plane77 element in ANSYS has the same order (quadratic) of temperature field approximation

as in the reformulated higher-order theory. For the first case, Fig. 13 (a), the temperature field

contour plots obtained using the reformulated higher-order theory and ANSYS are shown in Figs.

14 (a) and (b), respectively. For the second case, Fig. 13 (b), the temperature field contour plots

obtained using the reformulated higher-order theory and ANSYS are shown in Figs. 14 (c) and

(d), respectively. For the third case, Fig. 13 (c), the temperature field contour plots obtained using

the reformulated higher-order theory and ANSYS are shown in Figs. 15 (a) and (b), respectively.

Finally, for the fourth case, Fig. 13 (d), the temperature field contour plots obtained using the

reformulated higher-order theory and ANSYS are shown in Figs. 15 (c) and (d), respectively.

As observed in the contour plots, the temperature fields obtained from the reformulated higher-

order theory and the finite-element analysis match very closely. However, at the points with the

coordinates (1, 0) and (1, 1), which are the points of temperature discontinuity, the temperature

field obtained from reformulated higher-order theory shows better convergence than the finite-

element solution. This is because the boundary conditions in the higher-order theory are applied in

a surface-average sense, whereas in the finite-elements the boundary conditions are applied at the

nodes. Therefore, higher mesh refinement is required at the points of temperature discontinuity in

the finite-element case for this particular choice of element.

4.2.2 Effect of thermal conductivity variation

According to the Fourier's law of heat conduction, the heat flux is in the direction of the nega-

tive temperature gradient. Moreover, the temperature field is modulated by the variation in thermal
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conductivity.Increasingthe thermalconductivityin a particulardirectionshiftsthe temperature
fieldtowardstheoppositedirection,therebydecreasingthe temperaturegradientandvice-versa.

The temperaturefield for the samegeometryand boundaryconditionsas in the first andthe
secondcasediscussedin thissubsection,but for thehomogeneousmaterial,waspresentedin Fig. 8
(d). In the first case,increasingthethermalconductivityin the x2 direction shifts the temperature

field in the negative x2 direction, Fig. 14 (a), relative to the homogeneous case. In the second case,

on the other hand, decreasing the thermal conductivity in the z2 direction shifts the temperature

field in the positive x2 direction, thereby increasing the temperature gradient near the right face

of the block, Fig. 14 (c). Similar behavior is observed for the two-dimensional variation of thermal

conductivity shown in Figs. 15 (a) and (c).

4.3 Validation" Mechanical Problem

In Subsections 4.1 and 4.2, mesh sensitivity and validation studies were conducted for thermal

cases with both homogeneous and heterogenous materials. In this subsection, the classical Eshelby

problem for the pure mechanical loading is considered. This problem involves an elliptical fiber

inclusion in an infinite matrix with uniform surface tractions applied over the boundaries at infinity.

Here, for the purpose of comparison, a circular inclusion is considered instead of an elliptical

one and plane strain analysis is carried out. The matrix is assumed to be made up of epoxy and

its cross-section has unit dimensions in the z2 - z3 plane. A very small glass fiber is embedded in

the matrix so that the matrix practically behaves as infinite and the effects of the fiber inclusion's

presence on stresses are not felt near the edges. The material properties of glass and epoxy used

in the analysis are listed in Table I. The matrix is subjected to normal surface tractions of unit

magnitude in the z2 direction at the outer faces as shown in Fig. 16 (a).

Material E (GPa)
Glass fiber 69.0

Epoxy matrix 4.8

/2

0.2

0.34

Table I. Material properties of constituent fiber and matrix phases.

Because of the type of boundary conditions and the investigated geometry, the problem is

symmetric about the cross-sections along the lines x2 - 0.5 and x3 - 0.5. The mid-points along

the lines x2 = 0, 1 and x3 = 0, 1 are not expected to move in the x3 and x2 directions, respectively.

Therefore, in order to prevent rigid body motion, the middle two subcells along the lines x2 = 0

and x3 = 0 were constrained from moving in the x3 and x2 direction, respectively.

The full mesh used in the reformulated higher-order theory is shown in Fig. 16 (a). In order

to capture the high stress gradients near the interface of the glass fiber and epoxy matrix, which

occur due to the large material property mismatch between the two materials, very refined mesh

was used in the interface's vicinity. In order to clearly see the refined mesh near the inclusion, the

magnified mesh discretization is shown in Fig. 16 (b).

Stress contours obtained using the reformulated higher-order theory are shown in Figs. 17

(a), (c) and (e) and compared with the analytical solution (cf., Dugdale and Ruiz (1971)) in

Figs. 17 (b), (d) and (f), respectively. As observed from the contour plots, the reformulated

higher-order theory results match the exact analytical results very closely, both qualitatively and

quantitatively. The normal stress contour plots obtained from the reformulated higher-order the-

ory are perfectly symmetric about the horizontal and the vertical lines passing through the center of
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Fig. 16. Boundary conditions and mesh discretization for the Eshelby problem.
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Fig. 17. Comparison of stress fields obtained using HOTFGM and analytical solutions.

NASA/CRy2002-211909 52



the fiber inclusion as they ought to be due to the symmetry of the problem about these lines. Also,

the normal stresses are nearly uniform in the fiber and the shear stress is nearly zero. The stress

fields in the vicinity of the fiber are almost the same as those of the exact analytical solution.

The higher-order theory is sometimes confused with the finite-element technique. To demon-

strate that the two approaches are fundamentally different, a finite-element solution was developed

for the above problem. The same mesh was generated in ANSYS using 2-D structural 4-node

(Plane182) and 2-D structural 8-node (Plane183) elements with unit negative pressure applied along

x2 - 0, 1. Plane182 elements use a bilinear approximation of the displacement field while Plane183

elements have the same order (quadratic) displacement field approximation as in the reformulated

higher-order theory. The middle nodes along x2 - 0, 1 and xa - 0, 1 were constrained from moving

in the xa and x2 directions, respectively, in order to prevent rigid body motion. Stress contour plots

generated using the reformulated higher-order theory and finite-element analysis based on the 8-

noded elements are compared in Fig. 18. The results are plotted using the same color scale and are

magnified by 250 percent in order to compare the stresses in the vicinity of the fiber inclusion more

closely. As observed in these plots, the finite-element solution picks up local stress concentrations

at the interfacial subcell corners while, as seen in Fig. 17, the reformulated higher-order theory

does not pick these stress concentrations and compares well with the actual solution. Further, the
traction quantities are not continuous along the element interfaces in the finite-element case while

they are continuous along the subcell interfaces in the reformulated higher-order theory. Finally,
the stress components are not fully uniform within the fiber in the finite-element case. Table 2 lists

the maximum and the minimum stresses obtained from the analytical, reformulated higher-order

theory and the finite-element solutions. As observed in Table 2, the stress concentrations picked

in the finite-element analysis based on the 4-noded elements are smaller than the ones picked up

by the 8-noded elements and hence closer to the actual solution. However, the 4-noded element

assumes a bilinear variation of displacement field while the 8-noded element assumes a quadratic

variation. Hence, the results from the 8-noded element based analysis should be compared with

the actual solution because of the higher-order field approximation. In the finite-element case,

these stress concentrations are picked up because the circular inclusion has been approximated by

a stair-case pattern shown in Fig. 16 (b).

(MPa) Analytical HOTFGM
FEA

(4-node)

FEA

(8-node)
(7__x 1.49 1.58 2.52 2.94

(r_ n 0.05 -0.027 0.02 0.08

0.68 0.72 0.68 0.64

o_ in -0.35
0.37

-0.3 -0.63 -1.65

0.36 0.25 0.72

-0.37 -0.36 -0.25 -0.72

Table 2. Comparison of maximum and minimum stresses obtained using analytical, HOTFGM
and FEA approaches.

Further, in the finite-element case, the continuity of displacements is satisfied in a point-wise

manner (at the nodes) and therefore, the exact details of the geometry are important in order to

obtain converged results. This was demonstrated by generating the exact circular inclusion shape
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Fig. 19. Comparison of stress fields obtained using FEA with exact circular inclusion and

analytical solutions.

NASA/CR--2002-211909 55



using8-noded(Plane183)elementsin ANSYS.A total of 1045elementswasusedin the analy-
sis. The resultsobtainedfor this caseareplotted in Fig. 19and comparedwith the analytical
results. As seenin Fig. 19, the resultsobtainedusingthe finite-elementanalysisfor the exact
inclusiongeometrymatchtheactualanalyticalresultsbothqualitativelyandquantitatively.In the
reformulatedhigher-ordertheory,the displacement/tractioncontinuityconditionsareappliedin a
surface-averagedsenseand thereforethe variousfield quantitiesareblurredacrssthe interfaces.
An approximationof the inclusiongeometryproducesgoodresults.This isveryusefulin analyzing
practicalproblemswheremodelingthe exactgeometrycanbeverydemanding.

4.4 Validation: Combined Thermomechanical Case

In this subsection, a combined thermomechanical case is considered. The effect of temperature

increase on a constrained geometry is studied and the results obtained from the reformulated

higher-order theory are compared with finite-element analysis. The investigated geometry and the

thermal boundary conditions are the same as those considered in Subsection 4.1 and are shown

again in Fig. 20 (a) for convenience. The block is considered to be made up of aluminium and the

material properties used for the analysis are listed in Table 3. The mechanical constraints imposed

are the fixidity of the left and the right face of the block.

Material k (W/rn -°C) E (GPa)
Aluminum 220 72.4 iox100 joc/I0.33 22.5

Table 3. Material properties used for the combined thermomechanical analysis.

The cross-section of the block in the x2 - x3 plane was initially discretized into 32 x 32 subcells

of uniform size as shown in Fig. 20 (b). This discretization was shown to be satisfactory in dealing

with the thermal problem in Subsection 4.1. As the gradients of various mechanical field quantities

are expected to be higher around the corners, the mesh should be more refined in the regions of

higher gradients. Therefore, another discretization with the same number of subcells but with the

mesh refined around the corners was also considered as shown in Fig. 20 (c). In order to compare

with finite-element results, the same mesh (32 x 32, non-uniform, Fig. 20 (d)) was created in
ANSYS.

The temperature, displacement and stress field contour plots obtained using the reformulated

higher-order theory and finite-element analysis for the graded (refined around the corners) mesh

are shown in Figs. 21 and 22. As observed from the contour plots, the temperature and the

displacement field obtained using the two approaches are visually indistinguishable. The stress

field contour plots generated using the two methods also match very closely except at the corners.

The maximum and minimum stresses are obtained at the corners and their magnitudes predicted

by the reformulated higher-order theory and the finite-element analysis are different as shown in

Table 4. No consistent trend is observed from these magnitudes. The normal stresses predicted

by finite-element analysis are higher than the higher-order theory results, while the shear stress

predicted by the higher-order theory is higher than the finite-element result. A thorough ANSYS

analysis showed that these stress magnitudes (at the corners) do not converge with any amount of

mesh refinement but continue to increase as the mesh is refined further and further. This is most

likely due to the singular behavior at the corners which occurs because of the applied mechanical

boundary conditions.
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Fig. 21. Temperature and displacement field comparison obtained using HOTFGM and FEA for

the homogeneous plate with fixed boundary conditions.
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(MPa) HOTFGM

a_a_ -83

a_n -1871

a_ _x 152

a_ m -715

963

-963

FEA

-70

-2063

59

-1253

6O8

-608

Table 4. Comparison of maximum and minimum stresses obtained using HOTFGM and FEA
approaches.

The various field quantities (temperature, displacements u2 and u3, and stresses (722,(733, and

(723) were also plotted along the cross-section x3 - 0.1 in order to demonstrate the advantages of
refining the mesh in the regions of high gradients. The effect of uniform and non-uniform mesh

is studied and the results are compared with the finite-element results in Fig. 23. From these

cross-sectional plots, it is observed that the temperature and displacements converge with 32 x 32

subcells even for the uniform mesh case. However, the stresses are different for the uniform mesh

case, especially near the corners. This is because of the higher gradients in these regions. The

stresses are related to the derivatives of the displacement field and, therefore, the error in the stress

field is expected to be higher than in the displacement field. The non-uniform mesh with 32 x 32

subcells converges better then the uniform 32 x 32 subcell mesh. This shows the advantages of

effectively graded meshes. Therefore, an effective mesh should be created with relatively more

subcells in the regions of high field gradients. As observed from the above cross-sectional plots,

comparable results are obtained from the finite-elements and the reformulated higher-order theory
for the graded mesh.

5 Application: Thermal Barrier Coatings

As described in Section 1, one of the most important applications of functionally graded materials is

in the thermal protection systems such as thermal barrier coatings. In many practical applications

such as aerospace engines, electronic circuit boards, packaging of chips, etc., the structures are

subjected to very high thermal gradient loading. The metallic part in these structures yields when

subjected to very high temperatures. In order to prevent this yielding, the metallic substrate is

coated with a low conductivity ceramic layer to reduce the temperature to which the metal is

exposed. These ceramic coatings of metallic substrates with an adhesive layer between the metal

and ceramic regions, or the bond coat, are called thermal barrier coatings or TBCs.

Layers of bond coat and ceramic with sharp interfaces produce high interlaminar stresses at the

edges which may lead to separation of these layers. Therefore, in order to prevent these free-edge

interlaminar stresses, which occur due to large material property mismatch, the microstructure is

gradually varied. There are various spray techniques such as plasma spray, flame spray, arc spray,

etc., which are used in different industries for fabricating thermal barrier coatings. The metallic

substrate is first sprayed with an adhesive which acts as a bond coat between the metal and the

ceramic material, followed by the coating itself. These spray techniques can be very efficient in

producing functionally graded microstructures for thermal barrier coatings.

Thermal barrier coatings can be analyzed by using either the uncoupled or the coupled approach

as described in Section 1. In the uncoupled approach, the gradually varying microstructure is either
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assumed to be continuous function of spatial coordinates which best fits the given distribution or

approximated by layers with constant homogenized properties. These homogenized properties are

calculated using various micromechanical models. However, the uncoupled approach neglects the

locally produced effects of microstructural gradation. Using the layered approach with homogenized

properties may produce stress concentrations at the interfaces in the vicinity of free edge which
would not otherwise occur in the actual microstructure.

In this section, a TBC with continuously varying microstructure is analyzed using the reformu-

lated higher-order theory and the results are compared with finite-element analysis.

5.1 Problem Definition

The investigated geometry, microstructural gradation and the boundary conditions are shown in

Fig. 24 (a). The cross-section of the TBC in the x2- x3 plane has unit dimension in the x3 direction

and is twice as long in the x2 direction. The cross-section is discretized into 120 x 60 subcells such

that each subcell has an aspect ratio of one. The dimension of the block is considered infinite in

the out of plane (Xl) direction and plane strain analysis is carried out. The thermal barrier coating

is subjected to zero temperature at the bottom face and a concentrated temperature at the top.

The left and the right faces are insulated against conduction (zero heat flux). At the top face, the

temperature is assumed to vary with the x2 coordinate according to the exponential function

T(x2, 1) - 1325 (cos Ix2 - 11)20 + 25 (207)

as shown in Fig. 24 (a). The temperature is calculated at the right corner of the top edge of each

subcell and that constant value is applied at the top face of the subcell. The bottom face of the TBC

is placed on rollers and the middle two subcells at the bottom are fixed in order to prevent rigid body

motion. The bottom 12 rows of subcells (/3 = 1, 2, .., 12, _/= 1, 2, ..., 120) are assigned the properties

of steel which is the substrate. The next 8 rows of subcells (/3 = 13, 14, .., 20, 7 = 1, 2, ..., 120) are

assigned the properties of the alloy CoCrA1Y which acts as the bond coat adhesive. In the remaining

40 rows of subcells (/3 = 21, 22, .., 60, _ = 1, 2, ..., 120), the material properties are assigned such

that the adhesive (CoCrA1Y) lies at the bottom and the ceramic (zirconia) at the top with gradual

variation from the bond coat to the ceramic top coat. The material properties used in the analysis

are listed in Table 5. The volume fraction of the CoCrA1Y bond coat is plotted as a function of x3

in Fig 24 (b), showing the gradually changing microstructure.

Material k (W/m- °C) E (GPa)
Steel 60.5 207

CoCrA1Y 2.42 197

Zirconia 0.5 36

u c_ x 10 -6 (/°C)

0.33 15

0.25 11

0.2 8

Table 5. Material properties used for the thermal barrier coating application.

5.2 HOTFGM and Finite-Element Comparison

For the given geometry, microstructure and boundary conditions, the various field quantities (tem-

perature, displacements u2 and u3, stresses ere2, a33 and ae3) were generated using the reformulated

higher-order theory and are shown in Figs. 25 (a)- 30 (a). The various field quantities were also cal-

culated using the finite-element method in order to compare the reformulated higher-order theory

results. The finite-element solution was obtained by generating the same mesh and microstructure
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in ANSYS using 2-D coupled field, 4-node (Plane13) elements. In the finite-element case, the

temperature applied at the top face is calculated at the nodes using the assumed exponential
function. The bottom face is constrained to move in the x3 direction and the middle node at the

bottom is fixed in order to prevent rigid body motion. The generated contour plots for the various

field quantities are shown in Figs. 25 (b) - 30 (b). Also, the maximum and the minimum values of
the various field quantities are listed in Table 6.

U2

U3

O'22

O'33

O'23

Maximum Minimum

HOTFGM FEA HOTFGM FEA

0.0023 0.0022 -0.0023 -0.0022

0.0035 0.0034 0 0

103.7 107.9 -140.8 -225.6

71.5 105.4 -186.6 -217.2

70.1 86.7 -70.9 -84.7

Table 6. Comparison of maximum and minimum displacements and stresses obtained using
HOTFGM and FEA approaches.

As observed in the contour plots, Figs. 25 - 27, and also in Table 6, the temperature and dis-

placement fields obtained from the reformulated higher-order theory and the finite-element analysis

match very closely. However, the stress values obtained using the two approaches are considerably
different in the graded region, eventhough the general distributions are similar. In the finite-

element case, the stresses across the interfaces of the elements vary considerably as observed from

the contour plots in Figs. 28 (b) - 30 (b). The a22 and a23 stress components are the traction

components along the vertical interfaces of the subcells and (723 and (733 are the traction compo-

nents along the horizontal interfaces of the subcells. These traction quantities are expected to be

approximately continuous from one subcell or element to another. In the reformulated higher-order
theory, the traction quantities are continuous across the subcell interfaces. In the finite-element

case, on the other hand, the difference in these tractions across the interfaces of the elements,
particularly in the graded region, is very high, which demonstrates that the stress field has not con-

verged. This is partly due to the continuity of tractions/displacements which is explicitly applied

(in a surface-average sense) across the subcell interfaces in the reformulated higher-order theory.

In the finite-element case, continuity of displacements is explicitly applied in a pointwise manner

(at the nodes) and then the potential energy is minimized in order to obtain the displacement and

stress fields. Therefore, in the finite-element case, a more refined mesh is required in order to get

converged solution for the stresses. Also, as observed in the stress contour plots, the boundary

conditions are somewhat better satisfied by the reformulated higher-order theory.

Conclusions and Future Work

6.1 Conclusions

An efficient reformulation of the higher-order theory for functionally graded materials for two-

dimensional thermoelastic problems has been successfully developed. The subcell microvariables,

which were the basic unknowns in the original higher-order theory, were expressed in terms of the in-

terfacial surface-averaged quantities (temperatures and displacements) and these interracial surface-

averaged quantities were considered to be the basic unknown quantities in the reformulation. The
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Fig. 25. Temperature field for TBC application obtained using HOTFGM and FEA.
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Fig. 26. Displacement field u2 for TBC application obtained using HOTFGM and FEA.
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Fig. 30. Stress field (723 for TBC application obtained using HOTFGM and FEA.
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local-global conductivity and local-global stiffness matrix approach was used in order to eliminate

redundant equations. This resulted in the reduction of the size of the global conductivity and

stiffness matrices by approximately sixty percent. The reduction in the number of equations has

enhanced the theory's capability to analyze computationally intensive and demanding cases. Prob-

lems requiring greater mesh discretization (large number of subcells) which could not be analyzed

using the original higher-order theory because of the large number of equations involved are now

solvable with the reformulated higher-order theory.

Mesh sensitivity and validation studies were carried out for various thermal, mechanical and

combined thermomechanical cases. A practical application of the thermal barrier coating was also

analyzed. The results were compared to analytical and finite-element solutions for the various cases.

From the mesh sensitivity studies, it was observed that the temperature field converges very

quickly with mesh refinement and the temperature distribution can be accurately captured using

a relatively coarse mesh, especially for problems involving homogeneous materials. Also, averaging

the temperature across subcell interracial lines calculated using subcell microvariables on each side

of the interface produces better results.

A functionally graded case with thermal conductivity varying according to an exponential func-

tion was considered and thermal analysis was carried out. The results obtained from the higher-

order theory matched the finite-element analysis very closely. However, in the finite-element case

the temperature field did not converge to the actual temperature field at the points of tempera-

ture discontinuity. A more refined mesh is required at these points in the finite-element case. On

the other hand, the results obtained from the reformulated higher-order theory exhibited better

convergence at these points.

In many practical problems, the mesh discretization required to simulate exact inclusion shapes

can be x_ry demanding. The Eshelby problem demonstrated the efficiency of higher-order theory

in terms of mesh discretization approximation of the inclusion phase. It was observed that a

decent approximation of the circular inclusion using a rectangular grid produced results which were

comparable with the actual analytical solution. However, in the finite-element case, approximating

an inclusion shape using the same mesh discretization picks up stress concentrations at the sharp

edges which are not present in the actual solution. Therefore, a more refined mesh is required in
order to properly approximate the shape of inclusions in the finite-element case.

A thermomechanical case involving a homogeneous plate was also analyzed. The results from

the higher-order theory and the finite-elements matched very closely. The efficiency of using a

locally refined mesh in the regions of high temperature and stress gradients was demonstrated.

In the thermal barrier coating application, it was observed that the temperature and displace-

ment fields obtained using the reformulated higher-order theory and the finite-element approach

were visually indistinguishable, in contrast to the stress fields. In the finite-element case, the

tractions were not continuous across the element interfaces, especially in the graded region, and

the boundary conditions were not as well satisfied. In the reformulated higher-order theory, on
the other hand, the tractions were approximately continuous across the subcell interfaces and the

boundary conditions were better satisfied. This demonstrated the efficiency of the higher-order

theory in analyzing functionally graded microstructures. In the case of functionally graded mate-

rials analyzed using the finite-element approach, mesh discretization required for converged results

can be computationally very demanding if the actual microstructural details are explicitly taken

into account. In the finite-element case, displacement continuity is satisfied in a point wise man-

ner and hence stress concentrations are picked up at the points of material discontinuity at sharp

edges. However, in the higher-order theory, the continuity of tractions/displacements is applied

in a surface-average sense. This smoothing operation produces sufficiently accurate solutions with

relatively coarse meshes and approximate inclusion shapes.
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6.2 Future work

The completed two-dimensional thermoelastic reformulation of the higher-order theory is useful for

plane strain and generalized plane strain problems. In many practical applications, the type of

problems encountered are not limited to two dimensions, however. Many cases involve out-of-plane

loading conditions. Therefore, the next step is to extend the reformulation to three dimensions in

order to analyze more general problems. Also, in cases involving traditional composites, the material

is locally heterogeneous but globally periodic. Structural problems involving composites can be

analyzed by homogenizing the material using the concept of a representative volume element or

RVE. The effective properties of the locally heterogeneous RVE can be found using the homogenized

version of the reformulated higher-order theory by applying periodic boundary conditions, and

then the structure can be analyzed globally using the reformulated higher-order theory or other

techniques. The second step, therefore, is to incorporate periodic boundary conditions and out-of-
plane loading capabilities.

Generally, in practical problems encountered in the industry, deformations enter into the inelas-

tic range at the point where the structurecan still withstand considerably higher loads. Also, the

loading history affects stresses and deformations to an extent that depends on the type of material.

In order to carry out an optimum design of a structure, it is necessary to include these plastic

and viscoelastic or viscoplastic effects and analyze the design taking into account such behavior.

Therefore, viscoelastic, viscoplastic and plastic capabilities should be included in the reformulated
higher-order theory.

Presently, material properties are considered to be constant within a subcell. The material

properties can be assumed to be linear or higher-order in local coordinates depending on the
actual gradation of the microstructure. This may potentially lead to further reductions in mesh

discretization required to obtain converged solutions. The capability of having linearly varying

material properties within a subcell has been incorporated by Zhong (2002) into the thermal portion
of the reformulated higher-order theory. This will be extended to the mechanical portion.

The stringent environment and loading conditions to which structures are subjected may lead

to the initiation of cracks. Another long-term goal is to include fracture mechanics capabilities in

the reformulated higher-order theory in order to be able to analyze crack problems.
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